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Abstract. This paper addresses the problem of porting Higed parallel applications to the Grid. One of the
challenges we address is the change from statiofeneous cluster environments to dynamic heteragsn&rid
resources. We introduce a generic technique foptaaaload balancing of parallel applications onenegeneous
resources and evaluate it using a case study afiplic a Virtual Reactor for simulation of plasmaemical vapour
deposition. This application has a modular architec with a number of loosely coupled componenitable for
distribution over the Grid. It requires large paeden space exploration that allows using Grid resesl for high-
throughput computing. The Virtual Reactor contansumber of parallel solvers originally designedHomogeneous
computer clusters that needed adaptation to therdgeneity of the Grid resources. In this paper siely the
performance of one of the core parallel solvershenGrid, apply the developed technique for adapidad balancing
to the solver, evaluate the efficiency of this amh and outline an automated procedure for optirtiatation of
heterogeneous Grid resources for high-performaacallpl computing.
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1 Introduction

Porting complex distributed applications to the dsposes a grand challenge to the computer and datignal
sciences, mostly due to the dynamical and decé&sdahature of the Grid. Involving thoarallel computational solvers
further complicates the problem because of a seweterogeneity of Grid resources characterized tyda range of
processors and network communications performabately, the scientific community has been investlots of
efforts into development of Grid-aware problem gajvenvironments for complex applications [4,5].eTimportance
of fully integrated simulators (e.g. Virtual Reatpis recognized by various research groups aimhtific software
companies [1]. The Virtual Reactor used here &stdase was developed for simulation of plasmarergd chemical
vapour deposition (PECVD) reactors, a multiphygcsblem spanning a wide range of spatial and teeipsmales
[2,3]. Simulation of three-dimensional flow withenical reactions and plasma discharge in complexngéries is one
of the most challenging and demanding problemsamputational science and engineering, requiringh dagh-
performance and high-throughput computing.

Grid computing technologies opened up new oppdiasito access virtually unlimited computational
resources, and inspired many researchers to woddaptation of parallel methods and to develop maeghanisms for
distributed applications on the Grid. The PECVDt¥al Reactor discussed in this paper has also twedss way to the
Grid [2]. It serves as a test-case driving anddading the development of the Russian-Dutch contjpumzl Grid
(RDG) for distributed high performance simulati@j. [The Virtual Reactor is particularly suitable faorting to a Grid
environment since it can be decomposed into a numbé&inctional components (services). In addittorthat, this
application requires large parameter space exjpboratvhich can be efficiently organized on the Gridols to support
distributed parametric modelling on the Grid arengaleveloped, in particular the Nimrod-G middle&@r] which is
used in this project. Current work on porting thetdal Reactor to the Grid started within the framoek of the
CrossGrid EU project [5] and the Virtual Laborgtdor e-Science [8]. Some results of these effartse reported in



[2]. The RDG Grid is the successor of the Cross@mich sense that it uses many of the CrossGrichstrincture
services and operates as a testbed for the ViRegattor application. The final Grid-based VirtuaaRtor problem
solving environment aims at being a collaboratiystem, a distributed scientific workbench with agleed interaction
and visualization facilities.

In this paper we address the issue of porting @stieg complex problem-solving environment (PSE )t
Virtual Reactor from homogeneous cluster envirornterneterogeneous dynamic Grid resources. Thei&usxutch
Grid provides a strong hardware background for tieisearch as it contains sites with both homogenemd
heterogeneous computing and networking resourcesuild a Grid-enabled PSE based on a modular egijgh, a
proper functional decomposition of modules is reegli To assure that the components, especially ctatipnal
modules, are distributed efficiently it is necegstr carry out performance evaluation of the indidal modules on
Grid resources and draw generic conclusions om Hehaviour: how scalable they are depending ontidata and
resources used, what is the possible achievabledspe how infrastructure properties influence thppliaation
performance, etc.

A countless number of parallel applications haverbdeveloped for traditional (i.e. static homogerso
parallel systems. Porting such applications froormbgeneous computing environments to dynamic heteegus
computing and networking resources poses a chalémdkeep up a high level of application efficiend@p assure
efficient utilization of Grid resources, special theds for workload distribution control should bpphed. Proper
workload optimization methods should take into artdwo aspects: (1) the application charactesdgcg. the amount
of data transferred between the processes, amddlaating point operations and memory consumptianyl (2) the
resource characteristics (e.g. processors, netawodkmemory capacities, as well as the level ofrbganeity of the
dynamically assigned resources). The method shmilcomputationally inexpensive not to induce adasgerhead on
application performance. In this paper we presech® method and evaluate it using one of the parallel solvers of
the Virtual Reactor.

The issue of load balancing in a Grid environtrisraddressed by a number of research groups.rébne
studies on load balancing consider distributioprafcesses to computational resources on the systeary level with
no modifications in the application code [14,15sk often, load balancing code is included intcagh@ication source-
code to improve performance in specific cases [16,.3ome research projects concern load balaneicigniques that
use source code transformations to improve theutixgcof the application [13]. We employ an applica-centric
approach where the balancing decisions are takethéogpplication itself. The algorithm that estiegathe available
resources and suggests the optimal load balandiregparallel job is generic and can be employedny parallel
application to be executed on heterogeneous reseurc

A detailed description of global load optimizatiapproaches for heterogeneous resources and adapste
refinement applications is given in [23,24,25]. Hower, in [23] and [25] no network links heterogéyeivas
considered and only static resource estimatiotiglization) was performed in [23] and [24]. Thes® issues are the
major challenges of Grid computing: 1) the heteragty of the network links can be an order of magge higher that
that of the processing power; and 2) Grid resousresinherently dynamic. Developing our algorithwe tried to
address specifically these two issues. The appesadiscussed in [23] and [25] are only valid fotchasequential
applications (specifically for the queuing systeaml computer cluster schedulers), whereas ourteffodirected
towards parallel programs utilizing heterogene@ssurces.

The paper is organized as follows: Section 2 giesdescription of the proposed algorithm for atlapt
workload balancing on heterogeneous resourcesio8egtoutlines the architecture of the Virtual Reaapplication
and the Russian-Dutch Grid testbed infrastructBeztion 4 demonstrates the results of testing éaviour of one of
the parallel solvers on the RDG homogeneous diteSection 5 we show the results of applying thedldalancing
technique to our case study application. Sectioinavs conclusions from our work and presents sarned research
directions.



2 Adaptiveload balancing on heter ogeneous resour ces

One of the factors that determine the performariqeacallel applications on heterogeneous resourcé®e quality of
the workload distribution, e.g. through functiodalcomposition or domain decomposition. Optimal Idadribution is
characterized by two things: (1) all processorsehavworkload proportional to their computationapagity; (2)
communications between the processors are minimiZégse goals are conflicting since the commurdcais
minimized when all the workload is processed bingle processor and no communication takes plawdastributing
the workload inevitably incurs communication ovextie. Thus it is needed to find a trade-off andndefi metric that
characterizes the quality of workload distributfon a parallel problem. One of the existing methtwsneasure it is to
introduce a cost function reflecting the applicatiexecution time. Minimization of this function cesponds to
minimization of the application runtime. The fumstishould be simple and independent of the detéilse code. The
generic form of such a cost function is [20,21,22]:

H :Hcalc +ﬂ_|com’n’ (1)
where H . is minimized when the workload distribution amotfig processors is proportional to the processors
capacity (or equal in case of homogeneous procgsddr, ., is minimized when the communication time is minima
and (3 is a parameter that can be varied in order to thedalance between the calculation and commuoicsgrms.

This parameter is dependent on the characteristiosth the application requirements and the ressicapabilities.
The main generic parameters that define a pargiglication performance are:
« An application parameterf, ~N_.n/Noe (Ngm and N, are the amounts of application

communications and computations respectively);

A resource parametet! ~t. . /[t (fommiS @ typical time taken to communicate a singledvoetween

the processord, . - typical time required to perform a generic flogtpoint calculation).

The product of these two parametefr@ﬂ is often called the fractional communication oweth [20].

The goal of load balancing is to minimize the dostction (1). The parametef in this expression is an aggregated
value based on the application and resource s;:;ema'frametersfc and Y. Knowledge of these application and
resource properties allows constructing an appatgform of parametg? and performing suboptimal load distribution
[22]. However in most real-life complex simulatiproblems, it is not possible to theoretically c#dte the application
specific parameterfc with a reasonable precision. Even a detailed arslyf the algorithms and codes can fail in
many practical cases when the code has multiplecdbgswitches and completely different algorithmada
computational schemes are used while solving algmbdepending on the initial conditions and coraiohal
parameters. Estimation of the resource-specifiarpater 1/ also poses a challenge on heterogeneous Gridroespu
since there is a multitude of processors with #iteorof communication to computation performancanspng a few
orders of magnitude. Moreover, the Grid exhibiteayic network and processor performance, therefiatéc domain
decomposition fails to provide realistic estimatand consequently the optimal load distribution,ehsure efficient
load balancing of a parallel application on thedGii is necessary to estimate tjfie parameter experimentally. There
are two possible approaches to that: (1) directdasare the lumped value @ for the application on the allocated
resources and (2) separately benchmark the resyuesmatels and then find out the application-specific paranet
fc that would provide an optimal workload distribution a given set of resources. The first approaghires serious
intrusion into the application code. This is cerhainot desirable, especially when targeting toldai generic load
balancing system which tries to abstract from thgliaation specific issues. Thus we have chosersé¢isend approach
which is more generic and requires minimal modtfaras in the application code.

We have developed a meta-algorithm for adaptivd le@lancing on heterogeneous resources based chrbarking

the available resources capacity (defined as sofétdividual resource parameteys ={/,1i}) and experimental
estimation of the application parametég. The algorithm ensures efficient load distribufidhus minimizing the
application execution time. The cost function im oase is the experimentally measured executioe, tmhich depends
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on the distribution of the workload between thetipgrating processors. The target is to experinigntietermine the
value of fc that provides the best workload distribution, inginimal runtime of the application mapped to the
resources characterized by parametepset

The outline of the load balancing meta-algorithrassollows:

1. Benchmark the resources dynamically assigned tarallpl application; measure the resource charatiter
that constitute the set of resource parameiesvailable processors power, memory and links téftt).

2. Estimate the range of possible values of the agiptin parameterfc . The minimal value isfcmin =0, which
corresponds to the case when no communicationg between the parallel processes of the applicatitime
maximal value can be calculated based on the faligweasoning: For the parallel processing to nskese,
that is to ensure that running a parallel progranseveral processors is faster than sequentiabiégac the
calculation time should obviously exceed commuigcattime. For homogeneous resources this can be
expressed as following:

T, N ot
comm <1 - comm™comm <1 - fcmax ::I./ﬂ

Tcalc Ncalc calc
Analogously, for heterogeneous resources the Uppiércan be found as:

fcmax = max¢icalc)/min(ticomm)

3. Run through the range of possible values qu with a discrete step. For each value bJ calculate the
corresponding load distribution based on the resoyrarameterst determined in step 1 (details on
calculating the load distribution weights will folls this algorithm). With this distribution perforome or a
few time steps/iterations, and measure the exetuiime. Proceed with the next value df, for the
subsequent iterations, assuring that the simulatotinues without delays, with a modified loadtdmition,

4. Analyze performance results for different valuesqu; find the optimal valuefc*, which provides the best
performance of the application (i.e. minimal exémutime).

5. Execute further calculations using the discoveifga

6. In case of dynamic resources where performanadlissnced by other factors (which is generally ¢hse on
the Grid), a periodic re-estimation of resourceapaetersp and load re-distribution shall be performed.

7. If the application is dynamically changing (for tasce due to adaptive meshes, moving interfacégferent
combinations of physical processes modelled aewdifit simulation stages) theff must be periodically re-
estimated on the same set of resources.

Periodic re-estimations in steps 6 and 7 shall éfopmed frequently during the run-time of the aqgtion to

correct the load imbalance with a reasonably stheldy. The minimally required frequency of re-balag can be

estimated by calculating the relative imbalanceonficed during the controlled period of time (thenter of time
stepsliterations).

The combination ofn and fc* determines the distribution of the workload betwéke processors. To
calculate the amount of the workload per process@r,assign a weight-factor to each processor aswprib its
processing power, memory and network connectionsitilar approach was applied in [12] and in [17F fo
heterogeneous computer clusters, but the mechafismadaptive calculation of the weights and appita
requirements was not developed there. Moreovertdbks developed for cluster systems can not bel useGrid
environments without modifications since staticotese benchmarking is not suitable for dynamic Gadources,
where the weights shall be calculated every tinsestiiver is started on a new set of dynamicallijgassl processors.

Let us assume that for thf@ processor:; is the available processor performance (e.g. @p/8), M is the
available memory (in MB) andh, - available network bandwidth to the processorMig/s). An individual resource
parameter/s; then can be represented using the valuep,ofn, n; . In a simple case when memory is considered only
a constraining factor (and not driving the loadabaing process) it igs; = P /ni . This resource parameter is widely
used in scientific applications where the most ingut factor is the ratio of the computational powethe network
bandwidth. In a more general case, two parameteal be considered//, and M . And for the memory-driven



applications, the ratio of the available memorytie network capacity of that processmsr/ni should play the major
role in resource evaluation.
To reflect the processor capacity, we introduceeighting factorw, for each processor. It determines the

final workload for a processor given by:
W, =w W, whereW is the total workload.

To determine the weighting factors we introducaapwterscp, C.,, and C, that reflect computational, memory and

communication requirements of the application. Thes weight of each processor is estimated usiegfdhowing
expression:;

W =Cop +CyM +CN: T w =1, 0y
This weighting factorW, reflects a relative capacity of the resources @ting to the estimated infrastructure
parameter/, = L(p,,m,n) and the application parametdy, . The infrastructure parametefg can be determined
by a set of benchmark runs before the actual catiouls start (but after the resources have beegrastto the
application). Searching througlf\C with fixed values of/; gives us the optimal valuéc* which corresponds to the
optimal mapping of the workload to the resources.

The parametersC,, C, and C, depend not only on the application characteristic$ also on the

heterogeneity of the resources. Let us analyse these parameters and weighting factw/s are related tofC and

M; . Consider a traditional situation when memoryniy@ constraining factor@,, = 0). Then parameters, andC,

shall be proportional to the amount of applicatt@mmunications (computations) and the heterogefeityrs:
Cp - Ncalc¢proc; Cn - Ncomm¢net' (3)

Here ¢ and ¢na are heterogeneity metrics of processors and nktlimks. In case of equal network links the

proc

weighting should be done only according to the essors capacity, therefore the network heterogepeitameter is
nullified: ¢net =0. Analogously, for homogeneous processﬁﬁsoc =0. The heterogeneity metrics of the network and

computing resources can be defined as following:

N

Z(ni _navg)z Z(p| - pavg)2

¢net =i:l—2' ¢proc ==

I —
Nnavg Npavg

Substituting expressions (3) fmp andC, in eq. (2), the weights can be re-written as:

Vvi - Ncalc¢proc pi + Ncomn¢net ni

For the trivial cases:
@« = O(the network is homogeneous), ~ Neac® proc B ~ Py

¢p,0C = O(the processors are homogeneoW¥):~ N e ~ N

otherwise

VVi - Ncalc¢proc pi + Ncomm¢netni - pi +ni fc&; ZVVI =1

1
proc

Defining ¢ = ¢net/¢proc as an aggregate heterogeneity metric of resourmkkeeping in mind thag, = p. /n; , we
get W, ~ p, 1+ f @/ 1)
Consideringd, = H which combines the characteristics of the resoperéormance and heterogeneity we get:

w, ~p @+ fc/ﬁi) (4)
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Knowing the fractional overhead of the applicateomd the heterogeneity level of the resources, weopdimize the
workload distribution using this fast weighting heique. To evaluate the efficiency of the workladistribution we
introduce the load balancing speedtn

@ - Tnon—balanced D.OO)/O, (5)

balanced
where T aanced 1S the execution time of the parallel applicativithout the load balancing, andl s is the
execution time using load balancing on the samefsetsources. This metric is used to estimate iﬁethat provides
the best performance on given resources — thedtingdue of @ in a given range offc. In a non-trivial case we
expect to find a maximum o® and thus an optimafc* for some workload distribution. Finite and noneae&alue of
fc* means that the application requirements fit bbet resources in this particular workload distribati which
minimizes the total run-time of the application.eT¢ase offc* =0 while ¢ # 0 means that the application is totally
computation dominated i.e. there is no communicatietween different processes, and the optimal ack
distribution will be proportional only to the contptional power of the processors. The caseﬁpe( =0 means that
we consider the resource infrastructure of hetareges processors connected by homogeneous netiwkskaind the

value of fc does not play a role — the distribution is agaipprtional only to the processing power.

In the discussion presented above while deriving4)g, we considered a simple case when memonyinemgents only
put a Boolean constraint to the allocation of psses on the resources: either there is enough rmgetmaun the

application or not. But it can play a role in thead balancing process being one of the determifactprs of

application performance. This is the case for appilbns that are able to control memory requiresmantording to the
available resources. In this case there will bdtanhél parameters analogous tfq and /4 (or these functions will be
more complex), but the idea and the load balaneiaghanism remain the same.

3 Casestudy on adaptiveload balancing: the Virtual Reactor

31 The Virtual Reactor overview and itsimplementation on the Grid

A complex problem-solving environment usually hamadular architecture and consists of a numbeioos$édly or
tightly coupled components [9]. Our test case,Mhieual Reactor, includes the basic componentgdactor geometry
design; computational mesh generation; plasma, 8od chemistry simulation; editors of chemical psses and gas
properties connected to the corresponding datappsesand postprocessors, visualization and airafpisnodules [2].
The aim of our research is to virtualize separatelutes of the application to run them efficiently services and
access them on the Grid.

The application components perform one (or a feWwthe following functions: problem description, sitation,
visualization and interaction. This is schematicatiown in Fig. 1, where we emphasize dimaulation components.
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Fig. 1. Functional scheme of the Virtual Reactor applarati

The core components are modules simulating plasiszhatge, gas flow, chemical reactions and film aditon
processes occurring in a PECVD reactor. The detailsumerical methods and parallel algorithms eggaloin the
solvers are described in [10]. The most importaatdres relevant to the Grid implementation ardofiews: for
stability reasons, implicit finite volume schemesrevapplied, thus forcing us to use a sweep-typerigthm for solving
equations in every “beam” of computational cellsech spatial direction of the Cartesian mesh. écisp parallel
algorithm was developed with beams distributed agntive processors. Communications are organizeciixigl a
Master-Slave model, where at each simulated time tte Master prepares instructions for the Sles@sgs them the
data to be processed, receives the results, amdgses them before proceeding to the next stepalfjogithm was
implemented in an SPMD model, using the MPI mesgagsing interface with MPI Barrier points for siramization.
Data exchange between the Master and the Slavepdated every time step, and simulation procemdhédusands to
millions of steps. In the testbed we use generid@®HRP4 built binaries that can be executed on ladl testbed
machines using the Globus job submission servicestlidy the influence of various parameters onsinsulated
processes we run a number of simulations in pa@h®wn in Fig. 1 as “Simulation 1” ... “SimulatioWi’ blocks) with
the assistance of Nimrod-G [7].

To provide efficient execution of a parallel apption on heterogeneous resources, it is needeteanlyc
understand the application performance dependencidsomogeneous resources first. This gives aghihsnto the
application scalability, induced fractional overtieadependencies of the amount of the communicatiand
calculations on the number of processors used,Téte.results of such tests can help estimatingprdicting the
behaviour of the application on heterogeneous ressuthus simplifying the adaptation process.

3.2 Russian-Dutch Grid testbed infrastructure

Generally the infrastructure of a site within a dGtestbed can be of one of the following types ddpey on the
underlying resources:

I. traditional homogeneous computer cluster architectutomogeneous worker nodes and uniform

interconnection links;

II.  homogeneous worker nodes with heterogeneous imeections;

lll. heterogeneous worker nodes with uniform intercotioBs;

IV. heterogeneous nodes with heterogeneous intercaomngct
A complete Grid infrastructure is always of the &WV, characterized by severe heterogeneity withide range of
processor and network communication parametersvéAshow later in this paper, the type of resousadkexated to a



parallel application significantly influences iterfformance, and different load balancing technicgresl be applied to
different combinations of the resources.

Currently the Russian-Dutch Grid testbed consi$tsix sites with different infrastructures: Amstand-1
(contains 3 nodes, 4 processors) — Type IV; Amsier@ (32 nodes, 64 processors) — Type |; St. Hrirggg4 nodes, 6
processors) — Type IV; Novosibirsk (4 processorsype Il; Moscow-1 (13 nodes, 26 processors) — Tlypéoscow-2
(12 nodes, 24 processors) — Type |I.

The Russian-Dutch Grid testbed is built with the@$3Grid middleware [5] based on the LCG-2 distiimg
and sustains the interoperability with the CrosdGestbed. More detailed information on the RDGbted can be
found in [6]. The RDG Virtual Organization (VO) iscluded into the CrossGrid VO, thus allowing tR®G
certificate holders to access some of the Cross@ddurces and services. The CrossGrid testbedstoiod 16 sites
with the infrastructures of all 4 types.

4 Application performance analysis on homogeneous sites

41 Benchmark approach

Benchmarking of a complex application is requiredevaluate its performance and reveal the depeieteio its

behaviour on the underlying infrastructure. We asstructural approach to benchmarking the Virtuaa®or as an
example of a complex application. Within this apgro, the overall functionality of the whole systésnstudied,

followed by performance measurements of the indi@idcomponents while they are not influenced baiets of the

other components.

Benchmarking the components of a complex problenvirgp environment allows evaluating their
performance depending on various parameters ligestyf input data and the resources used. This helpredict the
performance of a given component and use it faciefft resource allocation, thus improving the @lleresource
management within the whole application.

The earlier tests of the Virtual Reactor performedhe CrossGrid testbed showed that most of tieeadative
components of the Virtual Reactor do not put retms on the computer systems and network bandvedd can be
efficiently executed on distributed Grid resour{2s Next, we focused on benchmarking of geulation modules.
Each simulation consists of two basic componenis: for plasma simulation and another for reactiwes simulation
(see Fig. 1). These two components exchange orsnal amount of data every hundred or thousand siees,
therefore the network bandwidth is not critical their communication. Finally, we concentrate omdfenarking the
individual parallel solvers, starting from a 2D PHT solver which maintains all the features of tHa @ne but takes
less time to estimate the solver behaviour on the. G

4.2 Benchmark setup

The goal of the benchmarking we carry out is teedeine the scalability of the application, find dlé limitations on
the efficiency posed by the application architegtuesources and types of the simulations. Uncogesuch details will
allow us to optimize resource management strategwlfocating the application components within Wieole Virtual
Reactor problem solving environment.

The solver operates a reactor geometry that is osegpof a number of connected blocks. Differenesypf
simulation can be performed within a single geogpetrchemically inactive flow and a flow with cheral and plasma
processes. Physically the problem type is detemnbyethe gas mixture composition, temperaturessqumes, and the
plasma discharge operation mode. From the compaotdtpoint of view these types of simulations ditig the ratio of
computations to communications: in case of simmgptthemical processes the computational load isifsigntly
higher.



We started from a light-weighted problem not sirtintathe chemical and plasma processes, with alietp
reactor geometry consisting of a single block #ikmws easy tracking of parameter influence onetkecution time. To
measure the dependency of the solver performanoe ty@ input data, multiparameter variation hastegaplied. We
measured the solver execution time, speedup andnooination time depending on the combinations gfutn
parameters: the computational mesh size, numbanmofiation time steps and number of processors.

The benchmark tests had to be automated becaugeathmeter variation leads to a large number of job
submissions. To solve this problem we have builteaacution environment to support series of pararr®ieep
Globus job submissions. The environment is geremnid can be used for any kind of performance bendtsmaith
user-defined metrics and parameters to be analy¥étin this environment, the application to benehnknis described
using some templates that are filled with particidpplication data (e.g. Globus RSL template fdy gmbmission
which also contains the list of input and outplgdj. One of the functionalities of this executiemvironment is the
support for parameter-sweep runs, analogous to Wiatrod-G or Condor-G provides. The advantage of ou
implementation is that we can specify the paramsefand their ranges) that shall be changed, as aglthe
characteristics to be measured and visualized aitcatly to analyze the influence of those paramsete

In these tests, a single-block topology was usdw Alock was subdivided into acgll x ncell) number of
computational mesh cells, wititell running from 40 to 100, thus forming 1600—-1000sc&Ve performed also some
tests with real reactor geometries in order to khelether the reactor topology influences the palrglerformance,
since potentially it can introduce some load imbeta

4.3 Influence of the number of time steps and reactor topology

Experiments with a different number of time stepsvged that the execution time and other measureshpers are
linearly proportional to the number of time stegpyvided that this number is high enough and thedsrd output and
hard disk operations are kept minimal (that meamsxcessive logging, nor any storing of the 2Ddfebr other
additional files every time step). All the resuyitesented below are measured for 100 time steps.

Along with the single-block geometry, we studieé ferformance of the solver with a complex multigid
PECVD reactor topology, which consists of an edemanumber of computational mesh cells. The reshibwed that
all the measured characteristics of the solver Vieba (execution time, speedup, computation and roanication
time) on the same resources do not differ for tihgls-block and multi-block topologies of equal roen of cells
within 1% accuracy. This assures us that the gralyorithm used in the solver provides a goodl Ibalancing even
in cases of complex topologies. Further we testinflaence of the problem size (the number of meslts) with the
single-block reactor geometry, since it is eagervary the mesh size arbitrarily with a single-td@eometry than with
a multi-block complex topology.

44 Speedup of the chemistry-disabled and chemistry-enabled simulations

The measurements were carried out on all the Gtas within the RDG testbed. The parallel solveowséd a
noticeable speedup on the Moscow and Amsterdam aitéype | (homogeneous cluster with uniform comioation
links). Figures 2 and 3 demonstrate the total eti@cuime and speedup of the parallel solver fdfedént types of
simulation: A chemistry-disabled “light-weightedfnwlation (Fig. 2) and a chemistry-enabled “heagjhulation

(Fig. 3).
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Fig. 3. Chemistry-enabled simulation: total execution temel speedup for different computational mesh sizes.

We observe different trends of the solver perforoearior the light-weighted simulation, the speediggreases with
the increase of the mesh size (see the differemesun Fig. 2, right), while for the chemistry-died simulation, the
speedup increases with the problem size increage 3J: The different absolute values of the speeiduFig. 2 and 3
are mostly dependent on the resources: The rqaasented in Fig. 2 were obtained on the Moscovtelvgth slow
interprocessor links, and Fig. 3 shows the resilthe Amsterdam-2 site with fast communicationgfedent trends in
the speedup dependency on the problem size anesdit and explained in detail in Sections 4.6 and 4

The same parallel solver tested on homogeneous &téd with a higher ratio of the inter-process
communication bandwidth to the processor performamchieved much higher speedups, for instancesarséra.nl
with Infiniband interconnections it was 3 times Hég for the large problem size simulations. Theetgp MPI library
also influences the parallel efficiency of a pragraa specialized library optimized for the nativenamunication
technology (e.g. MPICH-GM for Myrinet communicat®oon das2.nikhef.nl) increases the speedup up dotitmnes
compared to the generic MPICH-P4 or MPICH-G2.

45 Communication timetrends

The time spent on inter-process communicationsimvithe solver is shown in Fig. 4 for different mesikes. The

communication time was calculated as a sum of MIPIBVIPI Receive time on the master node over ttad bmmber
of iterations.
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Fig. 4. Dependency of the communication time on the coatmital mesh size for different number of processor
(light-weighted simulation)
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We observe that communication time grows supewligewith the increase in mesh size, although teunt of data
transferred is linearly proportional to the numieérmesh cells. The exact understanding of this Wieba is not
relevant and falls outside the scope of this papke. fact that the time spent for sending the datzot equal to the
time of receiving the data in Fig. 4 can be ex@diby the type of measurements: both plots reprélserdata sent or
received by the master node only, as a synchranigimocess. As one can see, the size of the receliatd (which
represent the results of the calculations perfororethe slave nodes) is significantly less thanddia sent.

Some peculiarities in the communication time casden in Fig. 4, which are even more explicit ig. B (1)
The communication time grows non-monotonically witie number of processors, but drops down a littieevery
processor with an even number; and (2) The tim®lBf Receive calls is an order of magnitude higlwerthe larger
meshes on the first few processors. These obgemgadre discussed in Section 4.7.
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Fig. 5. Dependency of the communication time on the numlb@rocessors for different computational meslesi¢tight-weighted
simulation)

4.6 Computation to communication ratio

In Figure 6 the total execution time is presentieh@ with the contributions of calculation and commitation. For a
smaller computational mesh (Fig. 6 left), the comioation time makes a relatively small contributimnthe total
execution time even for a large number of processwolved. For a larger mesh (Fig. 6 right), comination makes
up to 30% of the execution time. This result canfirthat the network bandwidth is not sufficient this type of
problem (see also the explanations to Fig. 3).
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Fig. 6. Total execution time and contributions of the aldtion and communication depending on the numlbgracessors for

different computational mesh sizes (light-weighs@dulation)

As it was mentioned in the previous Section, theesocan simulate the chemical and plasma procesgbm the
reactor along with the gas flow. Figure 7 demonegrdahe ratio of computation to communication tifoe different
mesh sizes with different types of the simulatidhe higher the ratio is, the less communicatiomsraquired, which
obviously offers a better parallel efficiency ampbcation scalability The ratios in Fig. 7 explahe different speedup
trends observed in Fig. 2 and 3 for chemistry-esthlaind chemistry-disabled (light-weighted) simwolasi. From the
presented graphs we can see that the behaviohisafatio does not depend on the mesh size fochbenistry-enabled
simulations, while this behaviour for the light-gkted simulations significantly differs for smatichlarge mesh sizes.
For a small mesh size, the ratio stays decentlly, tdigd for 6 processors and more it reaches tled ¢d\the chemistry-
enabled simulations. For a larger mesh, the contippfaommunication ratio for the no-chemistry siatidns is very
low, thus diminishing the overall parallel effic@n
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Fig. 7. The ratio of the computation to communication tilmechemistry-enabled and light-weighted simulasio

4.7 Discussion of the resultsfor homogeneous resour ces

The results presented in Section 4.4 show thatptrallel speedup is lower for a larger problem gizé&h more
computational mesh cells) for the simulations aflgbems without chemical processes (see Fig. 2k Tut indicates
that the ratio of the inter-process communicatiamdwidth to the processor performance was not kigbugh for
light-weighted problems with relatively small numle operations per computational cell. It mearet fior optimal
usage of the computing power, a large number afgmsors for one parallel run shall only be useddtatively small
computational meshes. Thus the communication tdagp@uts a limit to the scalability of the solvier this problem
type. On the other hand, the simulation of the fleith chemical processes shows higher speedup withrlangehes
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(see Fig. 3). Here the amount of computations brbby simulating the chemistry changes the behavabthe solver
qualitatively. This leads us to the conclusiort tifferent resource allocation strategies showdpplied for different
types of simulation and meshes used.

The results in Fig. 5 reflect the network and reofdatures of the tested Grid site:

1. Since the site consists of dual nodes, the n&talsannels work more efficiently for data transféetween the
Master and a Slave processor if a connection waa@y established with another Slave processohersdame node.
This can be explained by implementation of the MiBtary which saves network resources while operémgl
maintaining connections for concurrent processethersame node.

2. The “peaks” of the MPI Receive time for the ffifsw processors (see Fig. 5 right) are causethéyonstraints
on the portions of data that could be accommodataxhce. The constraining factors could be the odtWwandwidth
distribution, the processor cache size, the merawaylable on the node, or a combination of thesfa.

5 Application performance on heter ogeneous resour ces

51 Performance of the parallel solver on heter ogeneous resour ces

The RDG Grid sites with heterogeneous processattoametwork links (Types Il, 1ll, 1V) provided opla limited
parallel speedup or even a slow-down of the origsotver with a homogeneous parallel algorithm gdavt shown).
This was inevitable since, in addition to the loanbdwidth links, these sites are characterized hy \diverse
resources: the processor and network parametées dif orders of magnitude for different nodes.

The solver parallel algorithm was originally devmtd for homogeneous computer clusters with equal
processor power, memory and inter-processor congation bandwidth. In case of submitting equal posi of a
parallel job to the nodes with different performanall the fast processors have to wait at theidrasynchronization
point till the slowest ones catch up, thus theaféd slow-down on heterogeneous resources isurptising. The same
problem occurs if the network connection from thadtr processor to some of the Slave processonsidb slower
than to the others. As we have shown in the previsection, for communication-bound simulations (oiséry-
disabled simulation with large computational meyhtt®® communication time on low-bandwidth netwoik®of the
order of the calculation time, therefore the hegerwity of the inter-processor communication lirss hindrance as
considerable as the diversity of the processor po@ae of the natural ways to adapt the solveh&heterogeneous
Grid resources is to distribute the portions of gzthong the processors according to the processtorpance and
network connections, taking into account the appilicy characteristics. To adapt the parallel solver applied the
approach presented in Section 2.

52 Experimental results of the workload balancing algorithm

To illustrate the approach described in Sectione2pnresent the results obtained for different typesimulation
(chemistry-disabled and enabled) of a reactor gagnwkth 10678 cells on the St. Petersburg Grié.sithis site is
heterogeneous in both the CPU power and the netemrkections of the processors (Type V). Therehacel.8 GHz
nodes (nwol.csa.ru, nwo2.csa.ru) and two dual 46@ kbdes (crow2.csa.ru, crow3.csa.ru), all havihg BIB RAM.
One of the dual nodes (crow3.csa.ru) is placedseparate network segment with 10 times lower batttiv10 Mbit/s
against 100 Mbit/s in the main segment). The loaldring tests were performed with a moderatefsiablem which
does not pose restrictions on required memory, the:snemory influence parametey, was reduced to zero and the
exploration was done for the application parameftgr The link bandwidth between the Master and Sjareeessors
was estimated by measuring the time of MP|_Sentsteas of a predefined data block (with the MPIféusize equal
to 10 of MPI_DOUBLES) during the solver execution, aftee resources have been allocated. In these nezasnts
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the same logical network topology was used as eyaglan the solver. The CPU power and available mgmeere
obtained by a function from thgerfsuite library [11]. To validate the approach presente@®ection 2 we applied the
workload balancing technique for a single simulatimnning on different sets of heterogeneous ressurThe
estimation of performance for different possibléues of the parametef . (hence different weighting and workload
distribution) was carried out. For one simulatioqpe we expect to obtain approximately the same evalfithe
parameter fc* (that provides the best performance, see Sectionn2ylifferent sets of resources. Figure 8 (left)
illustrates the load-balancing speed@ achieved by applying the workload balancing teghaifor different values
of the parameterfC on several fixed sets of heterogeneous resoummes flight-weighted (chemistry-disabled)
simulation. In Table 1 we summarize the combinaiohprocessors dynamically allocated in 4 tesiffef@nt sets of
resources) and the weights assigned to each pardesshe values offc* providing the best execution time, thus the
maximal balancing speedup (see Fig 8 left).

: . N Heter ogeneity Balancing
ssor Weights assigned to each processor: metrics spesdup
[ ESOUT CES nwol | crow2/1l | crow3/1 | crow2/2 | nwo2 | crow3/2
1.8GHz/ | 450MHz/ | 450MHz/ | 450MHz/ | 1.8GHz/ | 450MHz/ ¢proc [/ C]
100Mb/s| 100Mb/s | 10Mb/s | 100Mb/s | 100Mb/s| 10Mb/s
set | 0.580 0.274 0.146 - - - 0.618 0.606 196 %
3 processors
setll 0.452 0.218 0.112 0.218 - - 0.638 0.502 182 %
4 processors
set ] 0314 | 0146 | 0080 0.146  0.314 . 0591  0.489 201 %
5 processors
stV 0.278 0.160 0.062 0.160 0.278 0.06p 0.618 0.606 9207
6 processors

Table 1. Distribution of processors and balancing weights/ling the best load balancing speedup for diffiéisets of resources.

Figure 8 (left) shows that for a given simulatitve test performance is delivered by weighting #sources with the
value of fC = 0.3-0.4. Noticeably, this corresponds to the valb&ined for this simulation during the prelimipar
analysis on homogeneous resources (compare tasésukimilar simulations in Section 4.6, Fig. The results show
that the algorithm gives the increase of the batenspeedup® up to 207 percent compared to the initial non-
balanced version of the code (with homogeneous lavadkdistribution) on the tested resource sets.cdresee that the
distribution of the workload proportional only toet processor performancefc( =0) also gives a significant increase
of the performance, but introduction of the depe&wgeon application specific communication/compuatatratio fC
and resource infrastructure parametgtsadds another 40 percent to the balancing spe&iup
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Fig. 8. Dependency of the balancing speedfpon the resource parametfegr. Left: single simulation on different sets

of resources..Right: different types of simulat@mthe same set of resources.
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Figure 8 (right) shows the dependency of the batanspeedup® for different types of simulation (chemistry enable
or disabled) on the same set of resources (sefrdih Table 1). The chemistry-disabled simulatiors f& higher
communication/computation ratio (as was shown a&isSection 4.6, Fig. 7). This is clearly seen ir #xperimental
results where chemistry-disabled simulation obta#freshighest balancing speed@ at higher fcvalues. Moreover,
the gain in the balancing speedup (maximal value@j is higher for the simulation with a larger frawti of
communications. These results illustrate that titeoduced algorithm for resource adaptive worklbathncing can
bring a valuable increase in the performance fonmanication-intensive parallel programs runningheterogeneous
resources.

5.3 Discussion and suggestionsfor generalized automated load balancing

The introduction of the load balancing techniquimveéd us to increase the efficiency of the paraflelver on
heterogeneous resources. The proposed method aéssive estimation of resource infrastructure patara /4 and
further determination of the application speciffg shows the possibility of automatic load balandiogapplications
which internal structure (computations and commatinns) is not known.

Analysis of the results achieved with the workldadancing algorithm suggested that the followirgues
shall be addressed in order to optimize the batanigchnique:

1. To measure the inter-process communication ratesem a fixed amount of data from the Master tcheBlave
processor. However in some cases the response @bthmunication channels to the increasing amotidata is
not linearly proportional as shown in Fig. 4. Fbe tslower networks this tendency is even more proced. This
brings us to a conclusion that the amount of datd ®© measure the links performance shall be dlm$lee amount
really transferred within the solver for every partar mesh size, geometry and solver type. Anotiygion to
estimate the inter-processor communication rate ianalyze the iteration data transfer time durihg actual
execution. However, this requires significant coumifications and might be undesirable.

2. To properly take into account the memory requiretherf each particular instance of a parallel sqhgemilar
reasoning shall be applied as for selecttrlg and C,: the choice of theC,, coefficient, setting the significance

(priority) of the memory factor influence on thepdipation performance, must depend on the typeesburces
assigned, analogous to tlﬁt% .

3. The specialty of the memory factor is that in additto this resource-dependency it is stronglyueficed by the
application features. To take into account the nmgmequirements of a parallel solver, the weightaigorithm
must be enriched by the function measuring the nmgmemjuirements per processor for each simulatioeach set
of resources. In case of sufficient memory on alted processors, the load balancing can be perébtakéng into
account all the factors (CPU, memory and networtk@r® memory factor is a constraint. After this,theo check of
meeting the memory requirements on each procesast be performed. In the unfavourable case of fitsenmt
memory on some of the processors, they must begdisled from the parallel computation or replacgdther,
better suited processors. This must be done pi#fecaitside the application, on the level of pagjbb scheduling
and resource allocation. This brings us to the kemien that ideally a combined technique shall eeatoped, where
the application-centred load balancing approadoigled with a system-level resource management.
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6 Conclusions

In this paper we address the issue of portingidiged problem solving environments to the GridingsVirtual
Reactor as an example of a complex application. @rtee most challenging problems we encounteres peating
parallel modules from homogeneous cluster envirarisn® heterogeneous resources of the Grid, spaltyfithe issue
of keeping up a high parallel efficiency of the gartational components. This problem arises for dewglass of
parallel programs that employ homogeneous loadiluligion algorithms. To adapt these applicationbéterogeneous
Grid resources, we developed a theoretical appraadra generic workload balancing technique tHeggénto account
specific parameters of the Grid resources dynaiyieakigned to a parallel job, as well as the aptibn requirements.
We validated the proposed algorithm by applying teichnique to the Virtual Reactor parallel solvensning on the
Russian-Dutch Grid testbed. It is worth noting ttret load balancing speedup goes through a maxiatdgr f* as
shown in Fig. 8. This indicates that the load bailag strategy does find an optimum in the complasameter space of
the heterogeneous application/architecture combimathe clear maximum gives an unbiased guide tdsvautomatic
load balancing. The developed approach is weleduibr either static or dynamic load balancing, ead be combined
with the Grid-level performance prediction modetsapplication-level scheduling systems [18,19].flidher explore
this new load balancing approach, we are curremtisking on the comparison of the theoretically dedi optimization
parameters for some specific topologies of paralpgllications with those predicted by our heuriatgorithm.

In order to optimize the resource management giyatsf mapping the distributed components of the
application problem solving environment, we benchiwd the individual components of the Virtual Reaan a set of
diverse Russian-Dutch Grid resources, and extelyssteidied the behaviour of the parallel solverghwvarious
problem types and input data on different resourfrastructures. The results clearly show that ewéhin one solver
different trends can exist in the application reguients and parallel efficiency depending on treblem type and
computational parameters, therefore distinct remmunanagement and optimization strategies shalippdied, and
automated procedures for load balancing are needautcessfully solve complex simulation problemgte Grid.

Acknowledgments. The authors would like to thank Irina Shoshminafredo Tirado-Ramos and the RDG Grid
deployment team for their assistance. The reseamssh conducted with financial support from the Dubdational
Science Foundation NWO and the Russian FoundatorBésic Research under grants number 047.016.687 a
047.016.018, and with partial support from the MaitLaboratory for e-Science Bsik project [8].

References

www.cfdrc.com, www.fluent.com, www.semitech.us, wwsaftimpact.ru
V.V. Krzhizhanovskaya, P.M.A. Sloot, and Yu. E. Bachev.Grid-based Smulation of Industrial Thin-Film Production.
Simulation: Transactions of the Society for Modgland Simulation International, V. 81, No. 1, pp-85 (2005)

3. V.V. Krzhizhanovskaya, M.A. Zatevakhin, A.A. Ignexi, Y.E. Gorbachev, W.J. Goedheer and P.M.A. SlAdsD Virtual
Reactor for Smulation of Slicon-Based Film Production. Proceedings of the ASME/JSME PVP Conference. ASNMB-Rol.
491-2, pp. 59-68, PVP2004-3120 (2004)

4. proj-openlab-datagrid-public.web.cern.ch, www.nbigt, www.fusiongrid.org, www.globus.org/alliancedfects.php,

cmcs.ca.sandia.gov, www.us-vo.org

The CrossGrid EU Science project: http://www.eu-CBrgsorg

High Performance Simulation on the Grid projectpfitgrid.csa.ru

Nimrod-G: http://www.csse.monash.edu.au/~davidaiodh

The Virtual Laboratory for e-Science project: hiigww.vl-e.nl

© @~ o u

David W. Walker, Maozhen Li, Omer Rana, Matthew 8ieffls, and Y. Huang. The software architecture afistributed
problem-solving environment. Concurrency - Pracéiod Experience, 12(15):1455-1480, 2000.

10. V.V. Krzhizhanovskaya et aDistributed Simulation of Silicon-Based Film Growth. Proceedings of the"™4PPAM conference,
LNCS, V. 2328, pp. 879-888. Springer-Verlag 2002

16



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

R. Kufrin. PerfSuite: An Accessible, Open Source Performance Analysis Environment for Linux. 6" International Conference on
Linux Clusters. Chapel Hill, NC. (2005)

J.D. Teresco et aResource-Aware Scientific Computation on a Heterogeneous Cluster. Computing in Science & Engineering,
V.7, N 2, pp. 40-50, 2005

R. David et al.Source Code Transformations Strategies to Load-Balance Grid Applications. LNCS vol. 2536, pp. 82-87,
Springer-Verlag, 2002

A. Barak,, G. Shai,, and R. Wheeldhe MOS X Distributed Operating System, Load Balancing for UNIX, LNCS, vol. 672,
Springer-Verlag, 1993

K.A. Iskra; F. van der Linden; Z.W. Hendrikse; BQvereinder; G.D. van Albada and P.M.A. Slobie implementation of
Dynamite - an environment for migrating PVM tasks, Operating Systems Review, vol. 34, nr 3 pp. 40A&&sociation for
Computing Machinery, Special Interest Group on OfregeSystems, July 2000.

G. Shao, R. Wolski and F. Bermavaster/Save Computing on the Grid. Proceedings of Heterogeneous Computing Workshop,
pp 3-16, IEEE Computer Society (2000)

S.Sinha, M.Parashar. Adaptive Runtime Partitionihd\dR Applications on Heterogeneous Clusters. In Beatings of 3rd
IEEE Intl. Conference on Cluster Computing, pp435;24®1

F. Berman, R. Wolski, H. Casanova, W. Cirne H. Dail,Aderman, S. Figueira, J. Hayes, G. Obertellichoff, G. Shao, S.
Smallen, N. Spring, A. Su, D. Zagorodnov. Adapt@emputing on the Grid Using AppLeS. IEEE Trans. arael and
Distributed Systems, vol. 14, no. 4(2003) 369—382

X.-H. Sun, M. Wu. Grid Harvest Service A System kamg-Term, Application-Level Task Scheduling. Pro€ 2003 IEEE
International Parallel and Distributed Processigm@osium (IPDPS 2003)(2003)

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salnama, D.Walker. Solving Problems on Concurrent Pssoes, volume 1,
Prentice-Hall, 1988.

J.F. de Ronde; A. Schoneveld and P.M.A. Sldaiad Balancing by Redundant Decomposition and Mapping, Future
Generation Computer Systems, vol. 12, nr 5 pp.489/-April 1997

J.F. de Ronde. Mapping in High performance Compu#ingase study on Finite Element Simulation, PhzithdJniversity of
Amsterdam, 1998

Chin Lu, Sau-Ming Lau. An Adaptive Load Balancindgérithm forHeterogeneous Distributed Systems with
Multiple Task Classes, International Conferencd®gstributed Computing Systems (ICDCS'96)

Zhiling Lan, Valerie E. Taylor, Greg Bryan. Dynamiomad Balancing of SAMR Applications on Distributed
Systems, Proceedings of the 2001 ACM/IEEE conferemcSupercomputing

Yongbing Zhang, K. Hakozaki, H. Kameda, K. Shimi2Zuperformance comparison of adaptive and statl lo
balancing in heterogeneous distributed system&te Annual Simulation Symposium, p. 332, 1995.

17



