
Distributed execution of aggregated multi domain workflows using an agent
framework

Zhiming Zhao Adam Belloum Cees de Laat Pieter Adriaans Bob Hertzberger
Informatics Institute, University of Amsterdam

Kruislaan 403, 1098SJ, Amsterdam, the Netherlands
{zhiming|adam|delaat|pietera|bob}@science.uva.nl

Abstract

In e-Science, meaningful experiment processes and
workflow engines emerge as important scientific resources.
A complex experiment often involves services and processes
developed in different scientific domains. Aggregating dif-
ferent workflows into one meta workflow avoids unneces-
sary rewriting of experiment processes and thus improves
the reuse efficiency. Remote workflow engines explore the
computing power of distributed environment. However,
the diversity of workflow description and execution models
makes the integration between engines difficult. An agent
framework uses ontology based communication language
and makes the integration to semantic information of re-
sources seamless, it is thus suitable for coupling distributed
engines. In this paper, we present our work in the context
of Dutch Virtual Laboratory for e-Science (VL-e) project. A
semantic registry for describing workflow engines is imple-
mented, and mobile agents are used to manage distributed
workflow coordination.

1 Introduction

In scientific research, workflow systems are emerging as
an important mechanism to automate the management and
integration of experiment processes. Using a workflow sys-
tem, a scientist can prototype an experiment by assembling
available software tools and services, and execute them via
an engine. During the past decade, workflow systems have
been utilized in different domains and a number of systems
have been developed, e.g., Kepler [1], Taverna [2], Pega-
sus [3] and VLAMG [4].

The development of a scientific workflow system is
heavily driven by domain specific applications; different de-
sign requirements make the models for describing and exe-
cuting workflow processes diverse. Such a diversity ham-
pers the interoperability between different workflow sys-

tems. This issue is getting increasingly important when in-
terdisciplinary research is used as a key approach to explore
new scientific findings.

Standardizing the description and execution models of
workflow processes is recognized as an important step to
improve interoperability between workflow systems; indus-
trial standards, e.g., Web Services, and Business Process
Execution Language (BPEL) are used to investigate such
a possibility [5]. However, the difference between scien-
tific domains makes the standardization of experiment pro-
cess modeling difficult. Developing a workflow system
with consideration of interoperability with other systems is
another effort. In the system link initiative [6], develop-
ers from several workflow projects discussed how to allow
their systems to invoke services developed by other projects.
Wrapping the engine of one system as a composite compo-
nent in another system is an often used approach. Since
the systems developed in academic projects are evolving
rapidly and lack of stability, in our early work, we argued
that aggregating different workflows using a software bus is
feasible to realize workflow integration. In [7, 8], we pro-
posed a workflow bus architecture, which can wrap legacy
workflow engines using autonomous agents, and couple
them in one high level workflow via a runtime infrastruc-
ture.

Distributed execution is highly demanded for large scale
workflows. Not only the distributed nature of software com-
ponents and services used in a workflow makes centralized
execution infeasible, but also installing engines for different
sub workflows into one environment is practically difficult.
In this paper, we continue our work on the workflow bus
framework and discuss how distributed execution support is
provided. The research is carried out in the context of Dutch
Virtual Laboratory for e-Science (VL-e) project [9]. The pa-
per is organized as follows. We first give a brief overview
on involved issues in workflow aggregation and distributed
execution. And then we review our early work on workflow
bus architecture, after that we propose an ontology based
repository and discuss how mobile agents are used to coor-

dinate distributed workflow execution. Some experimental
results will also be presented.

2 Workflow aggregation and distributed exe-
cution

VL-e is an e-Science project driven by different appli-
cation domains; it aims to realize a Grid enabled generic
framework via which scientists from different domains can
share their knowledge and resources, and perform domain
specific research. Effectively reusing existing workflow
systems and aggregating needed systems as a meta environ-
ment is viewed as a main research mission. In this section,
we discuss our early work on a workflow bus architecture
and analyze the requirements for supporting distributed ex-
ecution of aggregated workflows.

2.1 Distributed workflow execution

At different levels of abstraction, e.g., concrete com-
puting tasks or high level experiment processes, the work-
flow of an experiment is described differently; mapping
high level abstraction onto low level concrete processes,
and eventually onto executable software components or ser-
vices are basic way to execute a workflow [10]. There are
a number of reasons for supporting distributed execution of
a workflow: exploring the computing power over network,
parallel workflow execution, and improve fault tolerance.
Basically, the distributed execution of a workflow can be
distinguished from three aspects:

1. The execution of workflow processes. When workflow
processes use resources or services at different loca-
tions, computing tasks performed by remote compo-
nents are by nature distributed.

2. The integration of processes. Data flow renders the
basic dependencies between processes in a scientific
workflow; routing the data flow via a centralized en-
gine often results overhead for transferring data be-
tween processes and the engine. Decoupling the con-
trol information from the scientific data between pro-
cesses is a basic way, in which the integration between
data can be decentralized, e.g., via a storage service.

3. Workflow coordination. In addition to data integration,
orchestrating the runtime behavior of components is
important coordination intelligence for workflow exe-
cution. Such intelligence is typically realized inside
the workflow engine, and it is centralized in many of
the current systems. In distributed execution, a work-
flow is simultaneously collaboratively controlled via
multiple engines, e.g., instances of same or different
workflow engines.

Table 1 shows the distributed execution support in some
of current workflow systems.

 Process level Data integration
level

Coordination
intelligence

Kepler Special actors
interface
remote
resources.

In early versions,
data integration is via
centralised engine.
Now, tools such as
Griddles are being
integrated for
distributed data
integration.

A hierarchical control
mechanism is realised,
which is based the
Ptolemy director and
composite actor
architecture. But the
support for distributed
execution is limited.

Taverna Web services
compliant
processes.
Service
registry is
used.

SOAP based data
passing. Styx based
files transfer is used
for distributed file
accessing.

Centralized. A workflow
is enacted and executed
via engine, which is
currently shipped with the
workbench.

DAGMan Concrete
computing
tasks.

Tasks are assumed to
be relatively
independently. Files
are the basic data
passing mechanism.

Centralized. A DAGMan
engine schedules
computing tasks to
distributed environment.
So sophisticated flow
control.

VLAMG Distributed
resources are
wrapped as
VLAMG
modules.

A CORBA based port
library handles
distributed data
integration. File
based access is also
supported.

Centralized. The latest
version of VLAMG uses
GT4 service to submit
workflow description.

Figure 1. Distributed workflow execution in
some workflow systems.

From the tale 1, we can see, most systems support distri-
bution execution of workflow components, however the co-
ordination for components is mainly centralized. In Kepler,
execution intelligence is explicitly decoupled from work-
flow description, and encapsulated as different directors.
However, distributed directors are still in early develop-
ment. The centralized control intelligence gives limited
support for distributed execution of entire workflow, e.g.,
sweeping parameters using a workflow. This is an important
motivation for us to propose a software bus architecture, see
detailed discussion in [8].

2.2 A workflow bus architecture

The basic idea of a workflow bus is to wrap a number
of popular and relative mature legacy SWMSs as federated
components, and to loosely couple them as one meta work-
flow system using a software bus. In the context of work-
flow bus, we call a workflow being executed by a wrapped
SWMS as a sub-workflow, the workflow being coordinated
by the workflow bus as a high level workflow or a work-
flow in short. The execution of a workflow is called a study,
and the execution of a sub-workflow is called a sub-study or
a scenario. As a runtime infrastructure, the workflow bus
has to provide basic services for interpreting and scheduling
meta workflows, for orchestrating plugged legacy workflow

2

engines, for passing and distributing data between workflow
engines, and for supporting user interaction with workflows.
From the system level point of view, the partial functional-
ity from different systems are then aggregated and comple-
mented as one meta system.

2.3 Requirements

To couple cross domains workflows via a workflow bus,
a number of issues have to be taken into account:

1. An integration platform which couples distributed sub
workflows. Currently, many workflow systems have
decoupled engines which can be executed without go-
ing through the GUI component; however the invoca-
tion interface for the engine varies: as a local command
line e.g., Kepler and Taverna, as set of API, e.g, Tri-
ana, or web service, e.g., VLAMG. A proper platform
which can hide low level integration details between
engines is preferable.

2. A registry which records information of installed work-
flow engines. In a meta workflow, sub workflows are
composite processes which need to be executed by
proper legacy engines. The installation of these en-
gines is often too heavy to be shipped at runtime as part
of computing jobs. Instead, using pre-installed engines
over e-Science environment is a practical solution.

3. An ontology which serves as the basis for workflow
integration and information provenance. When cou-
pling workflows developed using different systems,
synchronizing the ontology of different systems is es-
sential for integrating data passed between them and
for providing data provenance.

In the next section, we will discuss how we solve these
problems in the current workflow bus prototype.

3 Solutions in VLE-WFBus

In [8,11], we discussed how agent technologies are used
to prototype the workflow bus: VLE-WFBus. JADE (Java
Agent DEvelopment Framework), a FIPA compliant frame-
work [12], is used to prototype a number of agents:

1. Scenario managers for wrapping legacy workflow en-
gines; scenario managers provide interface to ex-
change information via the agent framework. Depends
on the API of the legacy workflow engines, a scenario
manager can control the legacy engine via different in-
terfaces, e.g., Web Service, Socket, or command line.

2. Study manager, an agent for interpreting meta work-
flow, assigning tasks to scenario managers and coor-
dinating scenario managers at runtime.

3. User interface, the composition and monitoring of
workflow are realized as user interface which is de-
coupled from Study and scenario managers, but can
communicate with them via the agent framework.

In the framework, a registry which has information of
location of workflow engines is utilized, as shown in Fig. 2.
Before we discuss how distributed execution is supported,
we first give an overview on how the workflow bus works.

����������	
�����
������	��	��

���
�����
�
����

���
�����
�
����

������
��	�
��

��������
���	�
��	

����������
���	�
��	

���� ����
�����

��������

�	������

Figure 2. The runtime infrastructure of work-
flow bus.

3.1 A basic runtime scenario

At runtime, a study manager receives meta workflow
from a GUI agent or other composition services; it inter-
prets the workflow content and starts proper scenario agents
for different sub workflows. Before executing the sub work-
flow, a scenario manager first checks registry and locates
suitable installation of the workflow engine. The scenario
manger decides whether it should migrate to the node where
the engine is installed. A scenario manager uses the infor-
mation from registry to invoke the workflow engine and ex-
ecute the sub workflow. Fig. 3 shows the basic sequence
diagram.

��������	
���

GUI or others Study manager

Scenario Manager Registry

Scenario Manager

���
���	
��� ���������������
��������

������������

���������

������������

Figure 3. The sequence diagram of a simple
runtime scenario.

The communication between agents are handled by the
Message Transport Services (MTS) provided by the Jade
agent platform; Agent Communication Language (ACL)
models agent conversation using basic parameters, e.g.,
sender, receiver, content, ontology, encoding and reply
[13]. Jade explicitly models the semantics of the message

3

contents being communicated between agents as ontology,
which differs from the earlier syntactic based interface de-
scription languages, e.g., IDL or WSDL in CORBA and
Web services. A seamless interface between Ontology and
the runtime java class is implemented in Jade for handling
schemas of the communication messages. An important ad-
vantage is that such standardized ontology language also
promotes the feasibility for the semantic based integration
with other e-Science services, e.g., data storage and seman-
tic discovery. A workflow bus ontology is developed.

3.2 A workflow bus ontology

Based on the several workflow related taxonomy and on-
tology [14, 15], we proposed an workflow bus ontology to
model the concepts of workflow bus and the interaction be-
tween workflow bus agents. A meta workflow is modeled as
sub-workflows and dependencies, called relation links be-
tween sub-workflows. A meta workflow and sub workflow
is a sub class of generic concept workflow. A workflow has
a content which can be accessed via an access point, and
has property in language to indicate how it is described.
A workflow has input, output and configuration parame-
ters; the input, output and configuration parameters are sub
classes of generic concept data. A data concept also has
property access point. We did not try to model a generic
ontology which can cover concepts used in different work-
flow systems. So far we consider them as black box, which
can be can be accessed via the access point of its content.
In future, we plan to link the specific ontology defined from
that specific system.

The interactions between scenario managers and study
manager are modeled as a set of basic agent actions, e.g.,
assign workflow, register in workflow bus, update execution
states and migration are defined. These actions definitions
will be mapped as content of messages exchanged between
agents. Fig. 4 shows the basic definition of the ontology.

��������

�	
����������

�����������

���
	�
 ���	�������

���	
��
�

����
���
�

��
��
���
�

����������

�	��
��������

���

�����	��
��������

����������������

���

����
���
	�

���	��

������	

���	��

��������

������
��

����
����� ���
���

���

���

���

���

Figure 4. Partial ontology defined in workflow
bus.

Using the ontology, a study manager can send sub work-
flows to different scenario managers.

3.3 Workflow engine discovery and registry

In the ontology, the workflow engine properties and the
invocation interfaces are described. Several concepts are
defined: software package, workflow engine, invocation in-
terface, access point, data, and parameter. A software
package has several properties: access, a name, invocation
method, and dependence. The workflow engine concept in-
herits the software package properties and adds several new
ones: supported workflow descriptions. Invocation inter-
face has two sub class so far: command line interface and
web service interface. Fig. 5 shows the related concepts.

��������	
��

��������	������

���	��������

������	
����

����

������	���������

�������	
���������

��	���������

���

���	�������

���

������ ��	����

������	

��	��������

 ��������	��

��
���

!��������

���

���

"��	
��������

Figure 5. Part of the workflow engine related
concepts.

This ontology is used to annotate the registry information
and for agents to discover engines. Currently, a sesame en-
gine [16] is used. A mysql data base is used as the backend
repository. Since the ontology is also used to generate the
communication interface for agents, thus the ontology for
study and scenario agents is synchronized with the registry.

3.4 Agent based distributed execution

Using the registry information, a scenario manager deter-
mines the access point of the engine. Initially, the scenario
manager is started at the same machine where the study
manager starts. A scenario manager checks if the engines
is executed by command line or web services. Agent can
decide whether it needs to migrate. The decision is made
based on several issues, e.g., the load of the machine where
it is initialized and the location of the engine with which it
will interact.

In JADE, migration is implemented as services of agent
framework. Basically, it contains three steps: save states,
do migration and restore states. The Agent Management
Service (AMS) provides services for requesting migration.
Via the AMS service, a scenario manager can also know if
there is an available agent container on the machine.

4

3.5 Current prototype and experimental results

Currently, a registry is prototyped based on sesame 1.x.
The workflow bus ontology is described using OWL1. The
JADE 3.4 is used as basic framework. Several scenario
agents are currently developed, which include Kepler, Tav-
ernal and Triana.

In the implementation, a scenario agent is customized
by extending the property of a generic scenario agent for
interpreting invoking interfaces and generating proper call
for remote engine. To keep the basic service in workflow
generic and open; the description and execution model of
meta workflow is decoupled from the code of study man-
ager. The study manager can recognize new model of the
meta workflow description by adding new plug in compo-
nents.

Using the current prototype, we investigated the perfor-
mance characteristics of agents and the registry. We mea-
sured the average time cost for a scenario agent to query en-
gine information from the registry. Meta workflows which
have 1, 2, 4, 8 and 16 identical sub workflows are made as
test. The registry service was deployed in a node in local
experimental network with a Pentium 4, 2.8 GHz CPU, 1.5
GB physical memory, and the scenario agents are executed
in the super computer of the Dutch ASCI research school
(DASII) [17]. Both sides use Linux systems; the connec-
tion between DASII and the local node is 100M bits. We
investigate how the query time changes when the number
of agents increases. In the measurement, the study manager
creates different numbers of scenario managers, and the av-
erage time for all scenario managers are shown in Fig. 6.
The error bars are standard deviations.

���������	
����
��
����
��������������	
����
��
����
��������������	
����
��
����
��������������	
����
��
����
�����

�

����

����

����

����

����

� � � � �	

������
�
��������
����	���������
�
��������
����	���������
�
��������
����	���������
�
��������
����	���

�
�
�
�
�
�
�
�
�
	

�
�
�

�
�
�
�
�
�
�
�
�
	

�
�
�

�
�
�
�
�
�
�
�
�
	

�
�
�

�
�
�
�
�
�
�
�
�
	

�
�
�

Figure 6. Query respond time for registry.

From the measurement, we can see, the average time cost
for query gets high deviations when the simultaneous query
increases, however the average time costs remain close. So
far, the size of the test repository only contains 5 workflow

1The ontology is available at
http://staff.science.uva.nl/∼zhiming/Ontology/Workflowbus.owl.

engine instances (see the ontology); when the number of
triples in the registry increases, it might also influence the
query time. Nevertheless, from the experiment we can see
the average overhead for each query is acceptable.

4 Use cases in VL-e

We are currently investigating the applicability of the
workflow bus in several use cases; one of them is the medi-
cal imaging domain as proposed by Olabarriaga et al. [18] in
the VL-e Medical Imaging and Diagnosis subprogram. The
goal is to integrate a number of different workflows to sup-
port the development, evaluation and deployment of medi-
cal image analysis (MIA) applications along their complete
lifecycle:

1. during the development of new MIA applications, an
interactive prototyping environment is adopted for a
small set of images. The DElft Visualization and Im-
age processing Development Environment (DeVIDE
[19]) will be used in this phase;

2. during evaluation, the method is applied repetitively to
large amounts of images on a Grid environment. Nim-
rod [20] and VLAMG will be used in this phase; and

3. for deployment of the MIA application in the clinical
routine, it must be inserted in the workflow and the
information systems of the radiology department of a
hospital. In this phase, the Distributed Workflow Man-
agement System for automated medical image analysis
and logistics (DWMS [21]) will be used.

In addition to these workflows, services for storing and
accessing large scale medical images, e.g., using Storage
Resource Broker (SRB), will also be important components
to be integrated with the workflow for supporting research
activities in the Amsterdam Medical Center (AMC). The
four candidate engines for supporting workflows during the
lifecycle of a MIA application have different requirements
on execution and user interactions: DeVIDE is more user
interaction oriented, VLAMG and Nimrod are good at han-
dling massive Grid computing tasks, and DMWS is ade-
quate for managing MIA tasks at the hospital level. Inte-
gration of these systems will enable facilitated development
and maintenance of MIA applications by reducing the cur-
rent overhead for preparing the application to run in the dif-
ferent environments.

Since these engines have different workflow description
models, considering them as black box with the workflow
bus approach will promote a clean coupling paradigm as il-
lustrated in Fig.7. The engine of different workflow engines
are wrapped using scenario managers: a DeVIDE scenario
manager, a VLAMG scenario manager, a Nimrod scenario
manager, and a hospital workflow engine scenario manager.

5

��������	
����

DMWS
���� �����

������
���� �����

������
���� �����

��������
�
�������
���

������	��
�

�
	�����
����������

��!�"
�����

Figure 7. Workflow bus for integration of sys-
tems in the medical use case.

5 Discussion

In this section we will discuss the related work of the
workflow bus from three aspects: agent technologies, se-
mantic enhancement of registry and distributed workflow
execution.

Agent based approaches, e.g., modeling and engineering
or implementing part of the control intelligence of a sys-
tem as agents, have shown attractive possibilities for realiz-
ing scientific workflow management and e-Science frame-
work [22]. Compare to deliberative agents, the Jade agent
framework does not focus on sophisticate symbolic reason-
ing on agent behavior, instead it provides a cross platform
Java based distributed environment which extends normal
distributed OO based middleware by adding features for
scheduling activities and for managing agents. However,
from the discussion, we also see limitations of the Jade
framework. The simple model of Jade agents makes the
agent development easy; but it also requires effort for in-
cluding intelligence for complex control. Jade agents have
limit support for intelligent control at low level; the ACL
based messaging mechanism is more suitable for coordi-
nating system level behavior. But if compared to the other
available platforms, standardized architecture and commu-
nity effort still make it as one of an optimal choice for
our implementations. Using agents in Grid environment
also has to face a number of challenging issues. Migrat-
ing mobile agents between Grid nodes which have differ-
ent management policies and security concerns is the first
issue. Second, integrate agent framework to the underly-
ing e-Science services, e.g., SRB, and serve high level sub
workflows in a transparent way. These issues will be part of
the investigation in our future work.

In several workflow systems, e.g., in Kepler and Taverna,
ontology has been used as basis to organize workflow com-
ponents and to enhance the query for selecting components.
The ontology in such system mainly focuses on experiment
processes in specific scientific model instead of the engine

properties, and thus it is not directly applicable for discover-
ing engines in workflow bus. Grimoires, which is now part
of the OMII release [23], extends web discovery standards
Universal Description Discovery and Integration (UDDI)
with semantic annotations. The UDDI standard was mainly
designed for web services. Currently, many of the work-
flow systems are on the way to have their engines as web
services. The achievements in the related work will bring
fruitful results for the workflow bus.

An important application of distributed workflow execu-
tion is to schedule different instances of a workflow over
grid to optimize parameters, which is similar to the systems
e.g., Nimrod [24]. However, the workflow bus focuses on
the workflow level scheduling.

6 Conclusions

In this paper, we discussed the distributed execution of
aggregated workflows. The research is carried in the context
of Dutch VL-e project. A workflow bus based architecture
is presented. We discussed how to use agents to orchestrate
workflow distributed execution, and ontology to enhance
the query of registry. The implementation of the workflow
bus is still on going; issues, such as semantic level integra-
tion of workflows, are still under study. However, from the
discussion, we can at least draw the following conclusions.

1. By decomposing and encapsulating complex control
intelligence, a muti agent framework provides a flex-
ible platform for integrating distributed workflow pro-
cesses.

2. The FIPA ACL provides a flexible way to describe se-
mantics of the distributed components and to integrate
relevant e-Science services e.g., ontology reasoning.

3. Semantic based registry is essential for realizing dis-
tributed execution of aggregated workflows. And
sesame is a suitable tool to realize the registry.

7 Future work

We will continue our work in a number of directions. In-
tegrating current registry with standardized description ser-
vices, e.g., UDDI, will be an important issue. Another fu-
ture work is to investigate use mobile agent to coordinate
workflow execution in the scale of Grid environment.

Acknowledgment

This work was carried out in the context of the Virtual
Laboratory for e-Science project (www.vl-e.nl). Part of this

6

project is supported by a BSIK grant from the Dutch Min-
istry of Education, Culture and Science (OC&W) and is part
of the ICT innovation program of the Ministry of Economic
Affairs (EZ).

References

[1] B. Ludascher, I. Altintas, C. Berkley, D. Higgins,
E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, and Y. Zhao.
Scientific workflow management and the kepler sys-
tem. Concurrency and Computation: Practice and Ex-
perience, Special Issue on Scientific Workflows, page
to appear, 2005.

[2] Tom Oinn, Matthew Addis, Justin Ferris, Darren Mar-
vin, Martin Senger, Mark Greenwood, Tim Carver,
Kevin Glover, Matthew R. Pocock, Anil Wipat, and
Peter Li. Taverna: A tool for the composition and en-
actment of bioinformatics workflows. Bioinformatics
Journal., online, June 16, 2004.

[3] Yolanda Gil, Ewa Deelman, Jim Blythe, Carl Kessel-
man, and Hongsuda Tangmunarunkit. Artificial in-
telligence and grids: Workflow planning and beyond.
IEEE Intelligent Systems, 19(1):26–33, 2004.

[4] H. Afsarmanesh, R.G. Belleman, A.S.Z. Belloum,
A. Benabdelkader, J.F.J. van den Brand, and et al.
VLAM-G: A Grid-based Virtual Laboratory. Scien-
tific Programming: Special Issue on Grid Computing,
10(2):173–181, 2002.

[5] Kuo-Ming Chao, Muhammad Younas, Nathan Grif-
fiths, Irfan Awan, Rachid Anane, and C-F Tsai. Analy-
sis of grid service composition with bpel4ws. In AINA
’04: Proceedings of the 18th International Confer-
ence on Advanced Information Networking and Appli-
cations Volume 2, page 284, Washington, DC, USA,
2004. IEEE Computer Society.

[6] Link up project. http://www.mygrid.org.uk/linkup/.
2006.

[7] Zhiming Zhao, Adam Belloum, Adianto Wibisono,
Frank Terpstra, Piter T. de Boer, Peter Sloot, and Bob
Hertzberger. Scientific workflow management: be-
tween generality and applicability. In Proceedings of
the International Workshop on Grid and Peer-to-Peer
based Workflows in conjunction with the 5th Interna-
tional Conference on Quality Software, pages 357–
364, Melbourne, Australia, September 19-21 2005.
IEEE Computer Society Press.

[8] Zhiming Zhao, Suresh Booms, Adam Belloum, Cees
de Laat, and Bob Hertzberger. Vle-wfbus: a scientific

workflow bus for multi e-science domains. In Pro-
ceedings of the 2nd IEEE International conference on
e-Science and Grid computing, pages 11–19, Amster-
dam, the Netherlands, December 4- December 6 2006.
IEEE Computer Society Press.

[9] VL-e. Virtual laboratory for e-science. In
http://www.vl-e.nl/, 2005.

[10] Ewa Deelman, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Sonal Patil, Mei-Hui Su,
Karan Vahi, and Miron Livny. Pegasus: Mapping sci-
entific workflows onto the grid. In European Across
Grids Conference, pages 11–20, 2004.

[11] Zhiming Zhao, Adam Belloum, Cees de Laat, and Bob
Hertzberger. Using jade agent framework to prototype
an e-science workflow bus. In Agent Based Grid Com-
puting in the Proceedings of 7th IEEE International
Symposium on Cluster Computing and the Grid, page
to appear, Brazil, May 14- May 17 2007. IEEE Com-
puter Society Press.

[12] Fabio Bellifemine, Agostino Poggi, and Giovanni Ri-
massa. JADE: a FIPA2000 compliant agent develop-
ment environment. In Proceedings of the fifth interna-
tional conference on Autonomous agents, pages 216–
217. ACM Press, 2001.

[13] The Foundation for Intelligent Physical Agents.
Homepage of FIPA. In http://www.fipa.org/, 2004.

[14] Jia Yu and Rajkumar Buyya. A taxonomy of scien-
tific workflow systems for grid computing. Special
Issue on Scientific Workflows, SIGMOD Record, ACM
Press, 34(3):to appear, September, 2005.

[15] C. Pahl and M. Casey. Ontology support for web ser-
vice processes. In Proceedings of the 9th European
software engineering conference held jointly with 10th
ACM SIGSOFT international symposium on Founda-
tions of software engineering, pages 208–216. ACM
Press, 2003.

[16] Aduna. Open rdf homepage. In
http://www.openrdf.org/, 2007.

[17] (DAS-2). In The Distributed ASCI Supercomputer 2,
Homepage: http://www.cs.vu.nl/das2/, 2002.

[18] S. Olabarriaga, J.G. Snel, C.P. Botha, and R.G. Belle-
man. Integrated support for medical image analysis
methods: from development to clinical applications.
accepted to IEEE Trans. Information Technology in
Biomedicine.

7

[19] C.P. Botha. DeVIDE - The Delft Visualiza-
tion and Image Processing Developmen t Environ-
ment. Technical report, TU Delft, May 2005.
http://cpbotha.net/DeVIDE.

[20] D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nim-
rod: A tool for performing parametised simulations
using distrib uted workstations. In The 4th IEEE Sym-
posium on High Performance Distributed Computin g,
1995.

[21] J. G. Snel, S. D. Olabarriaga, J. Alkemade, H. G.
van Andel, A. J. Nederveen, C. B. Majoie, G. J. den
Heeten, and M. van Straten a nd R. G. Belleman.
A distributed workflow management system for auto-
mated medical image analysis and logistics. In 19th
IEEE Symposium on Computer-Based Medical Sys-
tems (CBMS’06), 2006.

[22] Ian Foster, Nicholas R. Jennings, and Carl Kesselman.
Brain meets brawn: Why grid and agents need each
other. In AAMAS ’04: Proceedings of the Third In-
ternational Joint Conference on Autonomous Agents
and Multiagent Systems, pages 8–15. IEEE Computer
Society, 2004.

[23] Open Middle Infrastructure Institute UK. Omii server.
In http://www.omii.ac.uk/, 2007.

[24] Tom Peachey, David Abramson, Andrew Lewis,
Donny Kurniawan, and Rhys Jones. Optimization us-
ing nimrod/o and its application to robust mechanical
design. In PPAM, pages 730–737, 2003.

8

