WS-VLAM: a GT4 based workflow management
system

Adianto Wibisono, Dmitry Vasyunin, Vladimir Korkhov, Zhiming Zhao,
Adam Belloum, Cees de Laat, Pieter Adriaans, Bob Hertzberger

Informatics Institute
University of Amsterdam
Kruislaan 403, 1098SJ, Amsterdam, the Netherlands
{wibisono, dvasunin, vkorkhov, zhiming,
adam, pietera, delaat, bob}@science.uva.nl
http://www.science.uva.nl/ii

Abstract. In e-Science, generic Grid middleware, e.g., Globus Toolkit
(GT), provides basic services for scientific workflow management sys-
tems to discover, store and integrate workflow components. The use of
the state of the art Grid services technologies advances the functionality
of workflow engine in orchestrating distributed Grid resources. In this
paper, we present our work on migrating VLAM-G, a Grid workflow
engine based on GT 2 to GT4. We discuss how we use the rich set of
services provided by GT4 in the new design to realize the user interactiv-
ity, interoperability and monitoring. The experiment results show that
use cases from previous systems can be migrated seamlessly into the new
architecture.

1 Background

The Virtual Laboratory for e-Science (VL-e) is a Dutch e-Science project which
aims to realise a generic framework for multiple application domains[2]. Workflow
management systems are considered as a core service for managing scientific
experiments. In VL-e, Virtual Laboratory Amsterdam for Grid (VLAM-G)[3]
system is recommended to the VL-e application scientists together with three
other workflow systems: Taverna [4], Kepler [5], and Triana [6].

The VLAM-G system was prototyped based on GT2 in an early project. Since
then, there was a shift of paradigm in the grid community into Service Oriented
Architecture. This shift was marked with the Open Grid Service Architecture
specification (OGSA) [7] for integrating distributed and heterogeneous grid re-
sources. Globus Toolkit 4 (GT 4) is a recent release which implements OGSA and
Web Service Resource Framework(WSRF) standards, and provides services for
constructing grid services, controlling security issues, and managing distributed
data.

To benefit from the rich set of GT4 services, in particular, service oriented
integration will provide a standard interface for interoperating with the other
workflow systems, a migration of VLAM-G to GT4 is demanded. The paper is

organized as follows. First, we describe the design of current VLAM-G prototype
and then discuss the lesson learned from the previous VLAM-G applications,
after that a GT4 based architecture called WS-VLAM is presented. We use a
test case to demonstrate the migration of previous VLAM-G applications to the
new architecture.

2 VLAM-G and its new design

VLAM-G provides a synthetic environment for performing grid enable scientific
experiments; it provides graphical user interface for prototyping high level work-
flows and for steering computing tasks at runtime, and an execution engine for
orchestrating experiment processes. On the high level a scientific experiment is
described as a data driven workflow in which each component (called module in
VLAM-G) represents a process or a Grid service in an experiment.

In this section we review the design of current VLAM-G prototype, and
propose a new design.

2.1 Lessons learned

The VLAM-G system consists of two core components: a graphical user interface
(VL-GUI) and the Run-Time System Manager (RTSM). The RTSM is a GT2
based engine for executing workflows composed by the VL-GUL

In the initial design, the VL-GUI and RTSM were tightly coupled. The en-
gine handles complex coordination between workflow components; however, the
strong dependency between engine and the user interface introduces a number
of inconveniences: the user interface has to be up all the time while the workflow
is executed remotely, and the RTS is thus not able to orchestrate Grid com-
ponents outside the GUI. For lots of data intensive applications in VL-e, these
issues become a bottleneck for scientists to perform long running experiments.
Decoupling the GUI and workflow engine is highly demanded.

Another lesson we learned from previous design is that VLAM-G has poor
interoperability with the other workflow systems. Application scientists often
require the integration between workflows developed by different systems, e.g.,
combining the data streaming based experiments with data statistical computa-
tion provided by R or Matlab. Incorporating third party workflows into VLAM-
G modules is time consuming, since VLAM-G uses its own defined component
architecture.

2.2 A new design

A new design of VLAM-G, namely WS-VLAM, is proposed. To decouple the
GUI from the engine, we wrap the RTS as a Grid service, which is deployed in
a GT4 container, and the original GUI is design as a thin client which can talk
to the RTS service. The overall architecture is depicted in Fig 1.

GT4-Container Resource A

Pre WS-GRAM o
Get avalable module GT-20 f?D D D D

¥ Heposlhory
Service 3

WS-Client —D{
Delegate o Delegation D D D
[Credential ¥l Senice ¥
3

¥
Workflow —
Composer RTSMInstance K
Resource B
- =~ 000
— T begiccmis L
el Execution status P

Service
[U }‘ (GrphEl]7 le! D D D
Viewer Graphical Output R[Port Fowarder

"uri%

.

~Jonse

b 4

o| ATSMFactory

Fl Semvice stantial

P

Fig. 1. Overal Architecture

The WS-VLAM thin client inherits the visual interface from VLAM-G for
workflow composition. A user can browse and select proper workflow components
from a repository according to specific requirements, and he can assemble the
selected components by connecting their input or output ports. The topology of
the workflow can be stored as XML format.

In Fig 1, standard GT4 services e.g., Delegation Service, and a set of WSRF
compliant services developed in the VL-e project are deployed in a GT4 con-
tainer. A repository service stores information about available components, and
allows the GUI client to invoke to obtain available resources for composition.
The original RTSM is wrapped as Grid services: a RTSM Factory Service and a
RTSM Instance Service. The factory is a persistent service which instantiates a
transient RTSM Instance service when a user submits workflow.

In the rest of this section, we discuss how the new design enacts and exe-
cutes a workflow, in particular the following issues in detail: workflow execution,
workflow monitoring, and user interaction support.

Workflow execution. To execute a workflow, the RTSM has to do a number
of things. Before the execution, the GUI client first contacts the GT4 delegation
service to create delegation credential, and retrieves an End Point Reference
(EPR), which is used at the execution phase to authenticate and authorize the
user. And then, the GUI client contacts the RT'SM Factory service to submit the
workflow description together with the delegation EPR. After that The RTSM
Factory uses the GT4 GRAM to schedule all the workflow components and
creates an RTSM instance which monitors the execution of the workflow. After
the job has been submitted to Grid, the RTSM Factory returns the EPR of
the RTSM instance to the GUI client. The EPR will be used by the GUI client
when attaching and detaching a remotely running instance of workflow. The

basic sequence diagram of the workflow submission mechanism and execution is
presented in Figure 2.

By subscribing basic events generated by RTSM, a GUI client can thus obtain
the run status of the experiment. A user can subscribe different events from
GRAM for monitoring the execution of each workflow component.

WS-VLAM Client Delegation Servi RTSM Fact ATSM Insta Pre WS GRAM Worker Nod:
[WSYoAV Ot | [Degaion Seves] [FTSWFaay] | TEnes| [PRWSGRAM| [WorkerNads |

Delegate Credential

Delegation EFR

Workflow execution piar| + Delegation EPR__ |00 e

SubmitJobs

GASS & Execution
ATSM Instance| EFR instance Oreated | (4rms Famde

Subseribe| Motification

Subscribe GRAM, |
Totficaion |

GRAM Netification
Notification| Registered Fegistered

T DeiveTEd

GRAM Notificatio| t‘i‘,ﬁl U
Notification| Delivered Ficls o] (4

Fig. 2. Workflow Submission and Monitoring

Workflow monitoring. For long running experiments, monitoring runtime
states of the execution is important. In WS-VLAM, monitoring supported is
realized by using the notification mechanism provided by GT4 Toolkit. Via the
standard interface of the notification services, GUI client can be instantiated as
multiple instances for subscribing the notification generated by RTSM Resource-
Property for monitoring different execution status. The output and the standard
error streams produced by a workflow component are redirected to the RTSM.
WSRF notifications are used to inform a client about these updates: if a user
subscribes to the WSRF topic associated with these logs, an event generated
from the GRAM is propagated to the subscriber (GUI client). This feature will
be use for realizing future provenance functionality.

Graphical output forwarding. Human in the loop computing is an impor-
tant requirement for including expert knowledge in experiment steering. The
graphical display generated by the workflow components and the visualization
of the entire workflow state is crucial to support the human to interact with
workflow at runtime. A key issue is to deliver the remote graphical output to
the end user.

Since the current execution environment of VLAM-G is Linux, graphical out-
put of a workflow component is associated with network traffic between graphical

application and virtual display to be used for rendering (X-server). A public X-
server can cause potential security problem; the privacy of the graphical display
will not be protected. Thus, each component has a private X-server instantiated
at the same host with a module. This allows to make all network connections
between graphical applications (X-clients) and virtual displays (X-servers) local,
and be invulnerable for network attacks.

GT4-Gontainer Resource B

RTSMInstance
Service

GS| Enabled Graphical Graphicpl Output
Connectiofy ort Forwarder

Output
Viewer

Fig. 3. Graphical Output

Another technical issue in forwarding graphical output is the common secu-
rity policy on a grid cluster: direct connection from outside of the cluster to a
worker node is often prohibited. To handle this situation, a secure connection
forwarding mechanism is used, as shown in Fig 3. Graphical connection from
the GUI client is mediated with a port forwarding components at the service
side. Since the service resides in the border node, it has bidirectional access to
the internal node where graphical output is produced and also access to GUI
client which monitors the results. We have enhanced standard VNC X-server
with GSI-enabled authorization in order to improve standard VNC authentica-
tion/authorization mechanism. This solution provides the same protection level
as any other standard Globus component.

In the next section, a test case is used to demonstrate how the new VLAM-G
works.

3 A test case

We use a VLAM-G application to demonstrate a number of features of the new
design: backward compatibility, workflow execution, monitoring, and Graphical
display handling.

SigWin-detector|[8] use case is in VL-e bio-informatics domain. The goal is to
analyze any given sequence of values, spanning from gene expression data to local
time series of temperature. The use case has been implemented using the previous
VLAM-G enviment; the SigWin workflow consists of modules that implement a
generalized and improved version of the ridge-o-grammer, a method originally
designed to identify regions of increased gene expression in transcriptome maps.

Since the basic architecture for workflow modules remain, thus the previous
VLAM-G description can be directly executed by the new RTSM. It allows
the high level user continue work with the same workflow without caring the
changing of the underlying engine.

Since a GUI client has been adapted; Fig. 4 shows the composition of the
SigWin workflow. Since WS-VLAM client (Fig 4) is now decoupled with the
workflow engine, user can easily detach and re-attach the client to the engine
while performing a long running experiment.

File View

BSeqSplittert

-s Windows
st

=
WFDRThresholdl
n

2 ample2rreatl
ample2rre
sam

]
o WMedianprob

Froxy Time Lert: 1156738 02959453125/ 774375

Fig. 4. SigWin Use Case

Another thing we have tried is to test the interoperability between WS-
VLAM and other workflow systems. Since we have a service based workflow
engine, such engine can be included by another other workflow systems which
can invoke service based resources. We have tried to integration the SigWin
workflow with the workflow supported by Taverna environment.

4 Discussion

From the data processing point of view, an e-Science experiment can be roughly
divided into two incremental phases: a prototyping phase where a scientist de-
velops an algorithm and validates it using a small set of data, and a production
phase where a scientist applies the algorithm to the full size data and runs the
computation on a distributed infrastructure.

Compared to the related works, the design of VLAM engine has new features.
First, the module parameters can be tuned and visualised at runtime, which
allows user interaction in the massive computing tasks. Second, the design of the
new engine takes the available WSRF services into account, and provide WSRF
compliant interface for other types of engine to integrate. We have demonstrated
it in the paper. Third, compared to the other Grid service interfaced workflow

engines, e.g., GridWorkflow[13], VLAM engine takes one step further and make
the implementation based on GT4.

5 Conclusions

In this paper, we discussed our work on scientific workflow systems. We reviewed
the design of the previous VLAM-G system, and summarized the lessons learned
from applications. We argued that using GT4 services can facilitate the devel-
opment of workflow engine. A new design of the VLAM-G is presented.

From our work, we can at least draw the following conclusions.

1. Decoupling the user interface from the workflow engine allows the execution
of the long running experiment be independent from the user interface. More
importantly, it enables workflow monitoring from different nodes.

2. The GT4 release provides rich set of services for realizing workflow engines
with considerations of security control, notification, and data management.

3. Finally, the standardized service oriented interface of a workflow engine pro-
motes the interoperability between different workflow systems.

6 Future work

For future work we will investigate and present further result on the performance
and efficiency of the system when applied to number of use cases. Especially
we will study the application of this framework on a parameter sweep class of
problems. This work will also be part of the long term research paradigm in the
VL-e context: generic e-Science framework. Currently, the workflow bus [15] is
an approach. Integrating WS-VLAM as part of the workflow bus will be another
important future research issue.

Acknowledgements. This work was carried out in the context of the Virtual
Laboratory for e-Science project (www.vl-e.nl). Part of this project is supported
by a BSIK grant from the Dutch Ministry of Education, Culture and Science
(OC&W) and is part of the ICT innovation program of the Ministry of Economic
Affairs (EZ).The authors of this paper would like to thank all the members in
the VL-e SP2.5.

References

1. Ewa Deelman, Yolanda Gil: Managing Large-Scale Scientific Workflows in Dis-
tributed Environments: Experiences and Challenges Second IEEE International
Conference on e-Science and Grid Computing (e-Science’06), 2006.

2. V. Korkhov, A.S.Z Belloum, and L.O. Hertzberger.: Vl-e: Approach to design a
grid-based virtual laboratory. In 5th Austrian-Hangarian workshop on Distributed
and Parallel systems, September (2004).

3. Adam S. Z. Belloum, David L. Groep, Zeger W. Hendrikse, Bob L. O. Hertzberger,
Vladimir Korkhov, Cees T. A. M. de Laat and Dmitry Vasunin: VLAM-G: a grid-
based virtual laboratory, Future Generation Computer Systems, Volume 19, Issue
2, , February 2003, Pages 209-217.

4. Thomas M. Oinn, R. Mark Greenwood, Matthew Addis, M. Nedim Alpdemir, Justin
Ferris, Kevin Glover, Carole A. Goble, Antoon Goderis, Duncan Hull, Darren Mar-
vin, Peter Li, Phillip W. Lord, Matthew R. Pocock, Martin Senger, Robert Stevens,
Anil Wipat, Chris Wroe: Taverna: lessons in creating a workflow environment for
the life sciences. Concurrency and Computation: Practice and Experience 18(10):
1067-1100 (2006)

5. Ilkay Altintas and Chad Berkley and Efrat Jaeger and Matthew Jones and Bertram
Ludascher and Steve Mock: Kepler: An Extensible System for Design and Execu-
tion of Scientific Workflows. Proceedings of the 16th International Conference on
Scientific and Statistical Database Management (SSDBM 2004), 21-23 June 2004,
Santorini Island, Greece

6. David Churches, Gabor Gombs, Andrew Harrison, Jason Maassen, Craig Robinson,
Matthew Shields, Ian J. Taylor, ITan Wang: Programming scientific and distributed
workflow with Triana services. Concurrency and Computation: Practice and Expe-
rience 18(10): 1021-1037 (2006)

7. 1. Foster, C. Kesselman, J. Nick and S. Tuecke: The Physiology of the Grid: An
Open Grid Service Architecture for Distributed Systems Integration, Global Grid
Forum (2002).

8. M.A. Inda, A.S.Z. Belloum, M. Roos, D. Vasunin, C. de Laat, L.O. Hertzberger,
T.M. Breit: Interactive Workflows in a Virtual Laboratory for e-Bioscience: the
SigWin-Detector Tool for Gene Expression Analysis Second IEEE International
Conference on e-Science and Grid Computing (e-Science’06), 2006.

9. Hamideh Afsarmanesh, Robert G. Belleman, Adam Belloum, Ammar Benabdelka-
der, Gert B. Eijkel, Anne Frenkel, Csar Garita, David L. Groep, Ron M. A. Heeren,
Zeger W. Hendrikse, Louis O. Hertzberger, Ersin Cem Kaletas, Vladimir Korkhov,
Cees de Laat, Peter M. A. Sloot, Dmitry Vasunin, Arnoud Visser, Hakan Yakali:
VLAM-G: A Grid-based virtual laboratory. Scientific Programming 10(2): 173-181
(2002)

10. Ersin Cem Kaletas: Virtual Laboratories and Virtual Organizations Supporting
Biosciences. IFIP TC5/WGb5.5 Third Working Conference on Infrastructures for
Virtual Enterprises (PRO-VE’02), May 1-3, 2002, Sesimbra, Portugal

11. G. von Laszewski and M. Hategan: Workflow Concepts of the Java CoG Kit. Jour-
nal of Grid Computing, January 2006

12. Liang Chen, Gagan Agrawal: A static resource allocation framework for Grid-based
streaming applications. Concurrency and Computation: Practice and Experience
18(6): 653-666 (2006)

13. Soonwook Hwang, Carl Kesselman: A Flexible Framework for Fault Tolerance in
the Grid. J. Grid Comput. 1(3): 251-272 (2003)

14. Abramson, D., Giddy, J., and Kotler, L.: High Performance Parametric Modeling
with Nimrod/G: Killer Application for the Global Grid? IPDPS’2000, Mexico, IEEE
CS Press, USA, 2000.

15. Zhiming Zhao and Suresh Booms and Adam Belloum and Cees de Laat and Bob
Hertzberger: VLE-WFBus: a scientific workflow bus for multi e-Science domains.
Proceedings of the 2nd IEEE International conference on e-Science and Grid com-
puting, Amsterdam, IEEE CS Press, 2006.

