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Optimality models are frequently used in studies of long distance bird migration to help 

understand and predict migration routes, stopover strategies and fuelling behaviour in a 

spatially varying environment. These models typically evaluate bird behaviour by 

focusing on a single optimization currency, such as total migration time or energy-use, 

without explicitly considering trade-offs between the involved objectives. In this paper, 

we demonstrate that this classic single-objective approach downplays the importance of 

variability in bird behaviour. In the light of these considerations, we therefore propose to 

use a full multi-criteria optimization method to isolate the set of non-dominated, efficient 

or Pareto optimal solutions. Unlike single-objective optimization where there is only one 

combination of bird behaviour maximizing fitness, the Pareto solution set represents a 

range of optimal solutions to conflicting objectives. Our results demonstrate that this 

multi-objective approach provides important new ways of analyzing how environmental 

factors and behavioural constraints have driven the evolution of migratory behaviour.  

 

 

 

 

 

 

 

 

 2



1. Introduction and Scope 1 
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One of the central goals in avian biology is to understand the behavioural strategies that 

birds adopt in real-world environments. Faced with the complexity and variability in 

nature, and the difficulty of performing controlled experiments, a variety of theoretical 

optimization models have been developed to help understand and examine migratory 

behaviour of birds. These models range from simple mathematical equations predicting 

the stopover duration at a given site when optimizing energy or time (Alerstam and 

Lindström 1990; Hedenström and Alerstam 1997; Weber and Houston 1997a; Houston 

1998) to spatially explicit individual-based models in which birds migrate over a 

simulated environment given a set of behavioural rules (Erni et al. 2002, 2003). 

Irrespective of the dimensionality and complexity of these models, it is assumed that the 

bird’s behaviour can be understood and predicted by posing the migration problem into 

an optimality framework. In such a framework, the behavioural strategy of a bird is 

evaluated against some prior defined fitness measure (e.g. time, energy and risk of 

predation), given appropriate biological and environmental constraints. The behavioral 

strategy that maximizes (as appropriate) this predefined fitness measure is then compared 

with observed behaviour. The advantages of this optimality approach are not difficult to 

enumerate: the fitness of any behavioural strategy, defined by a collection of decisions 

and actions can be directly evaluated in terms of the bird’s ability to reach the considered 

objectives, and perhaps most importantly, the strengths of modelling and measuring bird 

behaviour are combined in a natural way.  
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 In the pioneering work by Alerstam & Lindström (1990) two main currencies 

were developed that birds might seek to optimize during a migratory episode. Minimizing 

energy cost of transport is one strategy that could be used by migrating birds, especially 

short-distance migrants. An alternative currency is the time spent on migration, a 

currency most likely to be important for long-distance migrants (Weber and Houston 

1997). With some notable exceptions (Houston 1998) most optimality models used in 

avian biology generally obtain predictions assuming either time or energy minimization, 

without interpreting the range of adaptive compromises between these two conflicting 

objectives. So, current optimality models do not place emphasis on interpreting 

variability in behaviour that arises from differential weighting of flight time and energy-

use. Such an analysis would help understand the dominating selection factors that explain 

the bird’s behaviour in different situations. For instance, it would be useful to see if and 

when migration is primarily time-selected, energy-selected and so on.  
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In this paper, we present a novel concept of multi-objective optimization that 

proves very useful to interpret variability in the analysis of migration behaviour of birds. 

This multi-objective method operates by defining several performance criteria (objective 

functions) that reflect different (complementary) objectives of the animals’ behaviour and 

uses a full multi-criteria optimization method to identify the range of optimal solutions. 

(Schmitz et al. 1998). These Pareto solutions represent tradeoffs among the different 

incommensurable and often conflicting objectives, having the property that moving from 

one solution to another, results in the improvement of one objective while causing 

deterioration in one or more others. To illustrate the power and applicability of our 

approach, we consider a two-dimensional spatially explicit individual based dynamic 
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state variable model simulating the long-distance migration of passerine birds. Objective 

functions that will be considered are those that seek to minimize flight time (and thus 

maximize the speed of migration), and minimize energy-use of transport (Alerstam and 

Lindström 1990). The resulting optimization problem was solved using a MATLAB 

implementation of the Multi-Objective Shuffled Complex Evolution (MOSCEM-UA) 

global optimization algorithm (Vrugt et al. 2003a). 
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 This paper is organized as follows. Section 2 presents a condensed description of 

the basic optimality approach and describes the classical single objective optimization 

methods used to study animal behaviour. In Section 3 we provide a carefully built 

demonstration of the limitations of single-objective methods by application to the long-

distance migration of passerine birds using a two-dimensional spatially explicit 

simulation model. In Section 4 we subsequently discuss the rationale and architecture of 

our multi-objective approach, and pose the bird migration problem into a multi-objective 

optimization framework. The resulting inverse problem is solved using the computerized 

MOSCEM-UA algorithm. Finally, in section 5 we summarize the results.  

 

2. Optimization of bird migration 

2.1. Basic Inverse Problem 

 

The fundamental problem with which we are concerned is to predict the behavioural 

strategy of a bird that maximizes some predefined objective given appropriate biological 

and environmental constrains. The formulation of this resulting optimization problem can 
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be expressed in a generic form if we weight the n fitness functions, ƒi(θ) into one 

aggregated scalar, F(θ): 
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where θ is a parameter set, which defines the behavioural strategy of the animal, wi 

denotes a particular weight, and hi(θ) and bi represent k anatomical or physiological 

constraints on behaviour or life-history (Schmitz et al. 1998).  

 

2.2. Single objective optimization 

 

Current optimality models used in avian migration typically use time and energy as main 

criteria in Eq. (1), using values for the weights of 1/0 and 0/1 to result in pure time or 

energy minimization, respectively. The solution to this optimization problem is by its 

very nature a single optimal strategy. However, in real-world environments animals often 

do not match any single predicted optimum exactly, but instead exhibit broad variation in 

performance (Ward 1992; Schmitz et al. 1998; Rothley 2002). Using a single set of 

weights in the optimality analysis effectively neglects complex optimal solutions arising 
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from differential weighting of the various involved currencies, and therefore downplays 

variability in migratory behaviour.  
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3. Application of single-objective optimization to long-distance bird migration 

 

To illustrate the limitations of the single-objective approach set forth in Eq. (1) we 

consider the autumn migration of Willow Warblers over Continental Europa and northern 

Africa using a two-dimensional spatially explicit individual based simulation model. In 

this section we first describe the bird migration model used to conduct our analysis, and 

then discuss the limitations of conventional optimization.  

 

3.1. Case study 

3.1.1. Spatially explicit modelling framework 

 

We developed a two-dimensional spatially explicit dynamic model that simulates the 

time evolution of the spatial location and airframe, muscle, and fat amounts of an 

individual bird under a given set of behavioural rules. These rules, being characterized by 

a set of parameter values, define the decisions and actions of the bird that experiences 

dynamic environmental conditions. The model combines the strengths of the flight 

mechanical theory presented in Pennycuick (1998; 2003) and the two-dimensional 

spatially explicit modelling framework of Erni et al. (2002; 2003), but includes several 

additional features to increase flexibility and applicability. In this section we describe the 

most important components of the model.  
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 The environment is discretized into a two-dimensional rectangular equidistant 

grid of cells ranging from -20 by 40 degrees longitude to 10 by 70 degrees latitude using 

a grid resolution of 0.5° in both directions. This results in a structured mesh of 120 by 

120 cells. Each spatial cell was assigned a different Fuel Deposition Rate (FDR) based on 

work reported in Hedenström and Alerstam (1997), Weber (1999) and Erni et al. (2002; 

2003). The meteorological conditions (wind direction and speed) at each spatial cell are 

hourly updated using linear interpolation between two consecutive 6-hourly predicted 

wind maps from reanalysis runs of the NCEP model of the National Oceanic and 

Atmospheric Administration (NOAA). These data can be obtained from the following 

website: 

1 

2 

3 

4 

5 

6 

7 

8 

9 

http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html.  10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

 The simulations are calculated with time intervals of 1 hour and starts at August 

1, 2004 to consider autumn migration. A condensed flow diagram of the dynamic part of 

the model appears in Figure 1. The timing of flight and stopover is characterized by a 

flight cycle, consisting of a preset number of flight and rest days (indicated with Nfly and 

Nrest respectively). As we consider nocturnal migrants, birds intent to fly during the period 

between evening and morning civil twilight. The exact start and length of this period is 

computed at each day and spatial location in the considered grid domain. The final 

decision to take-off or to keep flying depends on the fat reserves and the experienced 

wind conditions at the 850 mbar level (Liechti and Bruderer 1998; Schaub et al. 2004). If 

the fat reserves or net speed of the bird drop below two user-defined thresholds (named 

mminfat and Vmin) the bird will not take-off or in the case of active flight, will stop flying. 

When not in flight, the birds rest or refuel depending on the search and settling time 

(Klaassen and Biebach 1994). Refuelling rate is computed as the net effect of the 
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experienced FDR at the stopover site and the basal metabolic rate (BMR), which process 

also continues during non-flight hours. The BMR was calculated using the work by 

Lasiewski and Dawson (1967) for passerine birds.  
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 During active flight, the speed of the bird including its associated mechanical 

power and energy equivalent are computed using the flight mechanical framework of 

Pennycuick (1998) given a preset speed option (maximum range, minimum power or 

constant speed). Variables needed in this computation, and the values assigned to them, 

are listed in Table 1. Heading, net speed and direction are subsequently calculated using 

the current experienced wind conditions in the respective cell in combination with the 

preferred direction and a wind compensation or drift factor (Alerstam and Pettersson 

1977; Alerstam 1990; Liechti and Bruderer 1998). The wind compensation factor 

(referred to as Pwind in the model) determines how much the bird is using of its own speed 

to compensate for the wind vector (defined by wind direction and speed). No 

compensation will result in complete wind drift, where the net direction becomes the 

resultant of the wind vector and bird vector. A full compensation means that the bird is 

utilizing its flight speed to compensate for the wind vector by adjusting its heading, so its 

net (resultant) direction becomes as close as possible to the preferred migration direction.  

The preferred direction is based on the endogenous direction and on large-scale 

geography: coastlines, barriers and borders of barriers affect the preferential direction, in 

a similar way as implemented by Erni et al. (2002; 2003). Passerines avoid flying over 

large water bodies and if they do, they will cross perpendicular to the coastline. 

Information about large-scale topography, water bodies, and FDR are included in a 

landscape map. Depending on the chosen protein burn criteria (specific work held 
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constant, power density held constant, or muscle mass held constant) the energy used 

during flight is distributed between airframe, muscle and fat consumption (see 

Pennycuick 1998). At the end of the hourly calculation interval, the new position of the 

bird in the spatial domain, the cross-sectional area of the body, wingbeat frequency, and 

the remaining mass of fat, airframe and muscle are updated. This time-marching 

computation continues until the bird either covers the required distance to complete the 

journey, or runs out of consumable fat reserves, or when the simulation time exceeds 200 

days.  
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3.1.2. Speed calculation, muscle burn criteria and target destination  

 

At each hourly calculation interval the speed of the bird is computed as a constant factor 

(1.2; see Table 1) of the minimum power speed (Vmp) (Pennycuick, 1998). Moreover, the 

hypothesis underlying all our calculations is that no muscle tissue is consumed and that 

no energy is derived from oxidizing protein (e.g. Jenni and Jenni-Eiermann 1998; 

Pennycuick 1998). Although various investigations have demonstrated that both these 

assumptions can be contested, they avoid a problem which becomes apparent during a 

refuelling phase. If protein is used as energy source, not only the fat reserves would 

decline during a long migratory flight, but also the muscle and airframe mass. During 

refuelling phases, it would then need to be made explicit how birds distribute their energy 

intake to build up their airframe, muscle and fat mass again. As not much is known about 

this distribution function and its spatial and temporal variation, we decided to use the 

constant muscle mass option with no protein burn.  
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 As the orientation and navigation behaviour of passerine birds is still subject of 

ongoing debate with not much consensus (e.g. Mouritsen 1998; Wiltschko et al. 2001; 

Thorup and Rabøl 2001) we decided to implement a quite simplistic set of rules: the 

orientation and target direction are assumed perfectly known during the entire migration. 

The target direction of the bird during autumn migration is computed during the 

initialization of the model from the geographical location of the breeding ground and 

endogenous direction (Dendog
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fall) using an arrival location at 15° north latitude.  

 

3.1.3. Model parameters subject to optimization 

  

Table 2 provides a detailed overview and description of the most important parameters in 

the bird migration model. A distinction is made between default values and parameters 

subject to optimization. As this illustrative case study considers the migration of the 

Willow Warbler, the default values correspond to those given in the literature by 

Hedenström and Pettersson (1984; 1987) for this nocturnal migration. For the other 

(calibration) parameters upper and lower bounds are specified, together defining the 

feasible space of behavioural rules. Note that some fuzziness exists in the selection of the 

calibration parameters. The decision to select this set of calibration parameters was based 

on arguments of maximum variation in behavioural rules with the lowest possible number 

of adjustable parameters.  

 Most of the parameters that appear in Table 2 have been previously discussed in 

the description of the model in section 3.1 of this paper. We therefore limit ourselves to 

those parameters that have not been given sufficient discussion. The parameter initfatfall 
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defines the fat mass at the start of the autumn migratory journey. Tuning this parameter 

provide a useful way to explore the influence of the initial conditions on the “optimal” 

migration route, given variations in the environmental conditions and behavioural rules. 

In addition, m
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crossfat signifies the minimum fat reserve of a bird needed to be able to 

successfully cross the desert and arrive at its wintering grounds. Only when the fat 

reserve is larger than this user-defined threshold, the bird will decide to cross the desert. 

Otherwise, the bird will remain at its stopover site and wait for his fat mass to build up to 

the level of mcrossfat. When this condition is satisfied the bird will decide to take-off at 

evening civil twilight, if the net speed is larger than Vmin. Other approaches in the 

literature consider a user-defined fat threshold that depends on the extent of the desert 

barrier, to signify the minimum amount of fuel for a bird to cross the desert. In the 

absence of prior information on the size of this fat threshold, we decided not to 

incorporate this approach, but instead to give the bird maximum flexibility in choosing its 

migration strategy by optimizing mcrossfat.  

 

3.1.4. Selection of objective functions 

 

To implement the single-objective optimization procedure outlined in section 2 of this 

paper, it is necessary to specify a set of relatively unrelated objectives, ƒi(θ), that measure 

different but complementary parts of bird behaviour. Most optimality models that have 

been developed in the ecological literature only consider flight time to be the main 

objective (Alerstam and Lindström 1990; Weber et al. 1998; Weber and Houston 1997; 

Hedenström and Alerstam 1997). It has, however, been frequently hypothesized that birds 
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not only tend to minimize flight time, but simultaneously also seek to minimize energy-

use and maximize safety (Alerstam and Lindström 1990; Houston 1998; Weber et al. 

1998; among others).  
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 In the context of bird migration, it is particularly difficult to formalize a 

mathematical framework that defines safety under a changing set of environmental 

conditions and behavioural rules (e.g. Lank and Ydenberg 2003; Lind 2004). In this case 

study, we shall therefore employ a rather simple optimization hypothesis: birds are trying 

to minimize migration time (measured by fT) and energy-use (measured by fE) during 

their autumn migratory journey using adaptive compromises to this trade-off problem. 

Migration time is being defined as the number of days needed to complete the autumn 

migration (days), while energy-use refers to the daily average energy consumption (kJ 

day-1) during this journey. This fE currency is computed as the ratio between the total 

energy-use during periods of flight (chemical power) and stopover/refuelling (basal 

metabolic rate) to fT. 

 

3.2. Results of classical single-objective optimization 

 

Figure 2 depicts the migratory pathways corresponding to three independent single-

objective optimization runs using different weights for the fT (1) and fE (2) objectives and 

a starting location of the Willow Warbler in south-western (60.0° N, 10.0° W) 

Scandinavia. The first two runs minimize migration time (solid line; w1 = 1; w2 = 0) and 

daily energy-use (dashed line; w1 = 0; w2 = 1) respectively, whereas the third run weights 

the two criteria equally to obtain a single aggregated fitness measure (dotted line; w1,2 = 
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0.5). In addition, Table 3 lists the corresponding parameter estimates obtained using a 

Parallel Computing implementation of the Shuffled Complex Evolution (SCE-UA) global 

optimization algorithm (Duan et al. 1993).  
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 The results presented in Figure 2 and Table 3 demonstrate that the optimal 

migration direction of the Willow Warbler heavily depends on how the bird seeks to 

compromise between flight time and energy-use. The depicted variation in behaviour 

represents a range of adaptive compromises to total migration time, and energy cost of 

transport. Unfortunately, it remains unclear which differential weighting is associated 

with the highest fitness as all three migration strategies result in a successful arrival at the 

wintering ground, and thus represent equally efficient (adaptive) compromises to the 

trade-off problem.  

In principle it would be possible to say how much weight should be given to 

conflicting objectives if lifetime success is to be maximized. For example, in the case of 

bird migration, by considering a single migratory journey in the context of the bird’s life 

history it is possible to specify what the terminal reward at the end of a migratory journey 

should be (McNamara et al. 1998). However, it would be desirable to have an 

optimization strategy that provides the entire range of adaptive solutions to conflicting 

objectives. Such a method would provide important insights and help understand how the 

individual objectives, influence the common currency or lifetime reproductive success. 

Also a single common currency will bias variation in animal performance and downplay 

variability. Moreover, it is difficult to mathematically develop a single common currency, 

which is insensitive to the magnitude and units of the separate criteria.  
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In the light of these considerations, we therefore propose to implement a multi-

criteria analysis to define the set of efficient choices animals may make in attempting to 

reach compromises among the various, often conflicting, criteria. There is arguably a 

significant advantage to maintaining the independence of the various criteria, because a 

multi-criteria optimization will allow an analysis of the tradeoffs among the different 

criteria and enable avian biologists to better understand the meaning of variability in 

migration behaviour of birds. An important feature of this approach is that, within the set 

of alternatives, no choice can be considered a-priori to yield higher fitness than any other 

choice. In the next section we demonstrate that considerable insights into the abilities of 

animals to make optimal decisions can be gained by analyzing this set of efficient 

choices. 
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4. Towards improved modelling of animal behaviour 

4.1 Multi-objective optimization  

 

The propositions set forth in the previous section imply the design of an optimization 

strategy that has the ability to simultaneously incorporate several objective functions. A 

strategy that can address this challenge is multi-objective optimization and can be stated 

as follows: 
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where fi(θ) is the ith of the n objective functions. The solution to this problem will in 

general, no longer be a single “best” parameter set but will consist of a Pareto set P(Θ) of 

solutions in the feasible parameter space Θ corresponding to various trade-offs among the 

objectives. The Pareto set of solutions defines the minimum uncertainty (variability) that 

can be achieved without stating a subjective relative preference for maximizing one 

specific component of F(θ) at the expense of another. To illustrate this concept, consider 

Figure 3 which depicts the Pareto solution set for a simple problem where the aim is to 

simultaneously optimize two objectives (f
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1,f2) with respect to two parameters (θ1,θ2). The 

individual points A and B optimize objectives f1 and f2, respectively, whereas the solid 

line joining A and B represents the theoretical Pareto set of solutions. The black dots 

indicate an initial set of parameter estimates, while the number in subscript denotes their 

corresponding Pareto rank. Moving from A to B along the line results in the improvement 

of f2 while successively causing deterioration in f1. The points falling on the line AB 

represent trade-offs between the objectives and are called non-dominated, non-inferior, or 

efficient solutions. Put simply, the feasible parameter space can be partitioned into 

“good” or Pareto solutions and “bad” or “inferior” solutions. In the absence of additional 

information, it is impossible to distinguish any of the Pareto solutions (rank 1 points) as 

being objectively better than any of the other Pareto solutions. Because of conflicting 

demands, it is usually not possible to find a single point θ at which all of the criteria have 

their minima.  
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4.2. Pareto solution algorithms  1 
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While it may be relatively simple to pose the bird migration problem into a multi-criteria 

framework, solving this problem to identify the Pareto set of solutions is not easy and has 

been the subject of much research. Ideally, the multi-objective optimization algorithm 

should find the set of all non-dominated solutions, which will constitute the global trade-

off surface. However, because computational resources are finite, multi-objective 

solution algorithms typically approximate the Pareto set using a number of representative 

solutions.  

 For linear models, multi-objective linear programming (MOP) methods can be 

used to analytically derive the set of efficient or non-dominated Pareto solutions (Cohon 

1978). However, for nonlinear settings with a dynamic state variable model, such as the 

spatially explicit bird migration model considered in this paper, an alternative class of 

solution algorithms is needed. Fortunately, the field of optimization theory has studied 

the multi-objective optimization problem for dynamic nonlinear state models quite 

extensively (Giocoechea et al. 1982). These methods for obtaining Pareto solutions can 

be categorized as a posteriori methods, a priori methods, and interactive methods. 

Presentations and discussions of these methods can be found in textbooks (Giocoechea et 

al. 1982; Szidarovsky et al. 1986) and in review papers (Hipel 1982; Szidarovsky and 

Szenteleki 1987; Yapo et al. 1992).  

 The overriding characteristic of classical multi-objective optimization methods is 

the sequential generation of the Pareto solutions. As an illustration, consider the 

weighting method of Eq. (1) in which each objective is allocated a weight, and the multi-
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objective problem is converted to a single-objective problem. This problem can be easily 

solved using classical optimization methods, as previously illustrated in section 3 for 

three combinations of the weights. By randomly assigning different values for the 

weights, we can generate as many discrete Pareto solutions as necessary to obtain an 

acceptable approximation of the continuous Pareto space. However, this method is 

computationally very demanding, as for each discrete Pareto solution a complete single-

objective optimization must be solved. This especially becomes problematic when an 

increasing number of fitness measures are included in the multi-criteria analysis. Note 

that conventional optimization approaches used in ecology could, in principle be 

extended to a multi-criteria implementation when optimizing the terminal reward with 

different weights for the criteria. However, as argued earlier, this aggregation approach is 

computationally very expensive.  
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 Fortunately, an efficient nonclassical method for solving the multi-objective 

optimization problem in its original form has recently been developed by Vrugt et al. 

(2003a). The method, entitled the Multi-Objective Shuffled Complex Evolution 

Metropolis (MOSCEM-UA) algorithm, is a general purpose global optimization method 

that provides an efficient estimate of the Pareto solution space within a single 

optimization run and does not require subjective weighting of the various objectives. The 

MOSCEM-UA algorithm combines the strengths of the complex shuffling employed in 

the SCE-UA algorithm (Duan et al. 1993), the probabilistic Metropolis-annealing search 

procedure (Metropolis et al. 1953) of the SCEM-UA algorithm (Vrugt et al. 2003b) and 

an improved version of the fitness assignment concept of Zitzler and Thiele (1999) to 

construct an efficient and uniform estimate of the Pareto solution set. A detailed 
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description and explanation of the method are given in Vrugt et al. (2003a) and so will 

not be repeated here.  
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4.3. Application of multi-objective optimization to bird migration modeling 

 

A Parallel Computing implementation of the MOSCEM-UA algorithm was used to 

estimate the Pareto optimal solution space for the two measures fT and fE. The procedure 

used 10,000 model evaluations to converge to an estimate of the Pareto set. The results of 

this two-criteria {fT,fE} optimization are summarized in Figures 4 and 5 and discussed 

below.  

 Figure 4 presents normalized parameter plots for each of the parameters of the 

bird migration model using the MOSCEM-UA algorithm. The model parameters are 

listed along the x-axis, while the y-axis corresponds to the parameter values scaled 

according to their prior uncertainty ranges (defined in Table 2) to yield normalized 

ranges. Each line across the graph represents one parameter combination and is 

associated with a different combination of weights for flight time and energy-use. The 

solid and dashed black lines going from left to right across the plots correspond to the 

best single objective solutions of fT and fE, previously discussed in section 3.2, while the 

grey lines denote members of the Pareto set of solutions. The {fT,fE} objective function 

plots on the right-hand side in Fig. 4 depict two-dimensional projections of the bi-

criterion trade-off surfaces represented by the Pareto set of solutions.  

 The results presented in Fig. 4 emphasize several important observations. In the 

first place, notice that the Pareto trade-off region remains of considerable size, when 
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compared to the initial parameter uncertainty. For most of the parameters the Pareto 

solution space occupies a significant part of the predefined feasible space of actions and 

decisions, suggesting that birds have quite some flexibility in choosing an “optimal” 

migration strategy. So, when considering the {f
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T,fE} objectives simultaneously the space 

of behavioural strategies does not collapse to a single strategy, as would have been the 

case when solving a single-objective problem (see section 3.2), but remains of finite size. 

In the course of seeking compromises between flight time and energy-use, different birds 

vary the weightings they place on both these objectives. These weightings represent 

equally efficient compromises to the trade-off problem and result in Pareto optimal 

behaviour. Any parameter set chosen from within this Pareto space is a good solution in 

the sense that it provides a certain trade-off in the minimization of the {fT,fE} objectives. 

Any other parameter set, outside this region, is a bad solution in the sense that it will have 

worse values for both objectives than any other point within the Pareto set. This is further 

demonstrated in the {fT,fE} objective function plots at the right-hand side, where a 

significant trade-off is found between flight time and daily energy consumption. Birds 

that seek to minimize flight time do this at the expense of consuming more energy per 

day, and vise versa.  

While our current objective functions do not incorporate any knowledge of field 

observations or ringing recoveries, the Pareto solution space results in bird behaviour 

which closely mimics observed behaviour: (1) the mean optimized fat fractions at autumn 

departure (initfallfat) of 0.27 (expressed to total body mass) closely match measured fuel 

amounts of similar size passerine bird species at the onset of their migratory journey 

(Alerstam and Lindstrom 1990), (2) the Pareto range of Vmin between 3 and 10 m s-1 is in 
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good agreement with experimental results from studies focusing on the influence of wind 

and rain on departure intensity (Erni et al. 2002; Schaub et al. 2004), (3) the Pareto 

average migration speed of approximately 90 km day
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-1 is in excellent agreement with 

observed migration speeds of about 85 km day-1 established from extensive ringing 

recoveries (Hedenström and Pettersson 1987), and (4) the Pareto average fuel amounts at 

arrival at the breeding and wintering grounds of between 0.1 and 1.6 gram is in the order 

of measured arrival fuel amounts for similar size passerine bird species (Smith and 

Moore, 2003), indicating that our model predicted fat mass dynamics is reasonable. 

These results are particularly excellent, in the light of our large initial parameter ranges 

and the fact that no direct observations are included in our objective functions.  

The second, perhaps most interesting, observation is that the Pareto solution set 

exhibits significant bifurcations in the parameter space with several non-overlapping 

strategies of “optimal” behaviour. This is most apparent for the endogenous direction 

(Dendog) and suggests a co-existence of two main migratory pathways of the Willow 

Warbler over continental Europe. This finding is in excellent correspondence with 

observed flight routes of the Willow Warbler, established from extensive ringing 

recoveries (Hedenström and Pettersson 1984; 1987, Alerstam 1996). To facilitate 

graphical interpretation of the results in the remainder of this paper, we have assigned the 

two different clusters of solutions in Fig. 4 a different grey tint. Depending on how the 

bird seeks to compromise between flight time and daily energy-use, the bird chooses its 

preferred flight direction and arrival destination. This is further demonstrated in Figure 5, 

which compares the observed center of gravity of migration of the Willow Warbler (Fig. 

5A) with simulated Pareto optimal flight route trajectories (Fig. 5B). Each mapped line 
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from the breeding to the wintering grounds represents the flight route of one Pareto 

solution.  
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Birds that seek to minimize flight time (light grey lines) should take a south-

southeast oriented flight direction, with an endogenous direction between 145 and 160 

degrees. On the contrary, for birds that seek to minimize daily energy-use (dark grey 

lines) it is most productive to take a more westerly oriented flight path with an 

endogenous direction ranging between 180 and 195 degrees. An almost perfect match 

with observed flight route trajectories is found for some Pareto solutions with south-

westerly oriented migration direction to the wintering grounds. These directions 

(indicated with dark grey) correspond with solutions in the bi-criteria trade-off surface 

that emphasize to minimize daily energy-use consumption. These results suggest that 

during autumn migration Willow Warblers tend to minimize daily energy-use.  

 The discontinuity in optimal behaviour, so evidently found in the Pareto 

parameter space, is also partly observed in the {fT,fE} trade-off surface at the right-hand 

side. We posit that the spatial and temporal varying environmental conditions in the 

spatially explicit model introduce a high-degree of non-convexity in the response surface. 

This explanation is also supported by additional multi-criteria optimizations in which we 

neglected the influence of wind conditions and topography on the flight direction of the 

bird. The outcomes of these numerical experiments clearly support this conjecture: The 

MOSCEM-UA algorithm experienced less difficulty to converge to a limiting Pareto 

distribution, and the non-dominated solutions were more closely clustered in the 

parameter space. This suggests that niche separation in life-behavioural strategies is 

 22



facilitated by spatial and temporal variations in environmental conditions, an observation 

that deserves further investigation in future research.  
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 All in all, we can conclude that the multi-criteria optimization approach has 

offered valuable insights into bird behaviour with the surprising result that for fall 

migration, minimizing rate of energy consumption rather than duration of migration is 

most important for explaining the Willow warblers’ routes and behaviour. Note, however 

that the results presented in this paper correspond to the analysis of one specific season. 

An optimization analysis of geographical migration patterns is not complete without 

considering combined effects during both autumn and spring. In another paper, we 

present a multi-criteria analysis of a complete migration cycle (Vrugt and Bouten, 2006). 

 

5. Summary and conclusions 

 

In recent years significant progress has been made in the application of optimality 

frameworks to study long-distance migration behaviour of passerine birds. However, 

these frameworks typically evaluate behavioural strategies against a single decision-

making objective, which might embody several fitness components using a weighting 

procedure, but underestimates the natural variability that exists in animal performance. In 

the light of these considerations, we have introduced a more elaborate analysis 

framework, called multi-objective optimization, which allows us to better examine 

decision-making in complex environments and interpret the meaning of variability. A 

multi-objective approach defines the set of efficient choices animals may make in 

attempting to reach compromises among multiple conflicting objectives. This set defines 
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the Pareto solution space in which it is not possible to objectively select a specific 

behavioural strategy as being superior to any other strategy within this space. So, instead 

of weighting the various objectives into one aggregate scalar, each of the fitness 

components is considered to be non-commensurate and its own entity. The size and 

properties of the Pareto solution set and the sizes and properties of the trade-off range are 

characteristics which will help to understand and predict animal behaviour.  
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 The power and applicability of the multi-criteria approach, was demonstrated by 

application to a two-dimensional spatially explicit individual based dynamic state 

variable model simulating the long-distance migration of Willow Warblers. Objective 

functions that were considered in the analysis include those that seek to minimize flight 

time and energy-use. The resulting optimization problem was posed in a multi-criteria 

framework and solved using the MOSCEM-UA global optimization algorithm. Through 

this case study we have shown that the multi-criteria optimization approach provides an 

excellent means to test the relative important of time and energy for the evolution of 

migratory behaviour, Moreover, it has provided the insight that variability does not imply 

lack of optimality.  

 Our current multi-objective optimization framework has used flight time and 

energy-use to analyse the migration behaviour of birds. Although these two criteria seem 

to be the most important in bird migration, the MOSCEM-UA algorithm is flexible and 

can simultaneously handle a much larger number of objectives. To facilitate this, and 

provide an efficient solution of the Pareto set, we have recently further improved the 

efficiency of the algorithm by implementing genetically adaptive multi-method search 

(Vrugt and Robinson, 2006).  
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 The bird migration model is written in MATLAB7.0 and can be obtained from the 

first author upon request. Optimization algorithms used in this and our other work are 

available in the MATLAB and C-language and can be downloaded from: 

1 

2 

3 

http://www.science.uva.nl/ibed/cbpg/software/.  4 
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6 
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8 
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Table 1. Variables used in Pennycuick’s flight mechanical framework 
 
Name       Unit  Value 
 
 
Body drag coefficient     [-]  0.10 
Induced power factor      [-]  1.20 
Air density      [kg m-3] 1.23 
Acceleration due to gravity    [m s-2]  9.81 
Ratio air speed: minimum power speed at start [-]  1.20 
Fat energy density     [J kg-1]  3.90·107 

Dry protein energy density    [J kg-1]  1.83·107 

Ratio water lost: protein consumed   [-]  2.20 
Chemical power conversion efficiency  [-]  0.23 
Circulation and respiration factor   [-]  1.10 
Density of muscle      [kg m-3] 1060 
Mitochondria inverse power density   [m-3W-1] 1.2·10-6 
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Table 2: Most important parameters in the bird migration model: distinction is made 
between default values and those subject to optimization  
 
Parameter Description    Unit  Value/Range 
 
 
    Default valuesa   
 
mmusc  Flight muscle mass   [g]  1.19 

mframe  Airframe mass    [g]  5.81 

b  Wing span    [m]  0.193 

S  Wing area    [m2]  0.007 

mmaxfat  Maximum fat mass    [g]  6.3 
Nfly  Number of consecutive fly days [d]  3   
Nrest  Number of consecutive rest days [d]  8 
 
    Calibration parametersa  
 
mminfat  Minimum fat mass during flight [g]  0.0 – 4.0 
mcrossfat  Minimum fat mass to cross barrier [g]  2.0 – 5.0 
Initfatfall Fat mass at start autumn migration [g]  0.0 – 6.3 
Dendogfall Endogenous direction autumn [°]  130.0 – 230.0 
Pwind  Wind compensation factor  [-]  0.0 – 1.0 
Vmin  Minimum net speed to take-off [m s-1]  0.0 – 10.0 
 
aValues and ranges are based on experiments with Willow Warblers reported in literature 
(Hedenström and Pettersson, 1984; 1987). 
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Table 3: Optimized parameter values corresponding to minimization of migration time (run 1), 
energy-use (run 2) and an equally weighted combination of the two (run 3).  
 
 
Parameter     Unit  Run 1  Run 2  Run 3 
 
 
mminfat     [g]  0.5  0.9  0.5  
mcrossfat     [g]  2.0  3.0  2.0 
Initfatfall      [g]  5.7  2.8  3.4 
Dendogfall      [°]  147.8  186.6  150.1 
Pwind     [-]  0.2  0.4  0.3 
Vmin     [m s-1]  5.9  9.0  4.7 
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Figure Captions 
 

Figure 1.  Schematic flow diagram of the dynamic part of the bird migration model.  

 

 

Figure 2.  Model predicted flight route trajectories corresponding to minimization of 

time (solid), energy-use (dashed), and a equally weighted combination of 

the two (dotted). The location of the breeding ground is indicated with a 

dot. The map is a Mercator projection.  

 

 

Figure 3.  Illustration of the concept of Pareto optimality for a problem having two 

parameters (θ1,θ2) and two criteria (f1,f2), in the parameter (A) and 

objective (B) space. The points A and B indicate the solutions that 

optimize each of the individual criteria f1 and f2. The thick line joining A 

and B corresponds to the Pareto set of solutions; γ is an element of the 

solution set, which is superior in the multi-criteria sense to any other point 

in Θ.  
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Figure 4.  Normalized parameter plots for the parameters in the bird migration model 

using a two-criteria {fT,fE} optimization with the MOSCEM-UA 

algorithm. Each line across the graph denotes a single parameter set, solid 

and dashed black lines are single criterion solutions of fT and fE, 

respectively, and grey = Pareto solution set. The single-objective solutions 

are identical to those reported in Table 3. The squared panels at the right-

hand side denote two-dimensional projections of the objective space of the 

Pareto set of solutions. 

 

 

Figure 5. (A) Schematic overview of the center of gravity of migration of a 

population of Willow Warblers with a breeding ground in southwestern 

(60.0° N, 10.0° W) Scandinavia. The arrows indicate the flight direction. 

This Mercator projection is reconstructed from ringing recoveries by 

Hedenström and Pettersson (1984; 1987); (B) Simulated flight route 

trajectories during autumn migration. Each line represents one Pareto 

solution. Different grey tints are used to distinguish between southwest 

and southeast oriented migration direction.  
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While CurrentTime < TotalSimulationTime

}similar to Pennycuick (1998)

(1). Compute evening and morning civil twilight at current location
(2). Update body of bird
(3). Find speed and energy use

(4). Should bird fly? (dependent on time, fly cycle and fat reserves)
Yes
a) Load field with spatially variable wind conditions

     (b) Compute net speed and direction using wind conditions
     (c) Is net speed larger than user-defined parameter?

              If yes bird takes-off, if no, bird will stay at stopover site
No

         (a) Bird will remain at stopover site

(5). Calculate new position
(6). Update airframe, muscle and fat amounts

CurrentTime = CurrentTime + ∆t
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Figure 5. 
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